Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Combined Model for High Speed Valve Train Dynamics (Partly Linear and Partly Nonlinear)

1990-09-01
901726
A numerical modeling technique is proposed for computer simulations of high speed valve train dynamics. The dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental results prove the computer model developed here is accurate and also computationally efficient.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A High-Fidelity Study of High-Pressure Diesel Injection

2015-09-01
2015-01-1853
A study of n-dodecane atomization, following the prescribed unseating of the needle tip, is presented for a high-pressure, non-cavitating Bosch Diesel injector (“Spray A”, in the Engine Combustion Network denomination). In the two simulations discussed here, the internal and external multiphase flows are seamlessly calculated across the injection orifice using an interface-capturing approach (for the liquid fuel surface) together with an embedded boundary formulation (for the injector's walls). This setting makes it possible to directly relate the liquid jet spray characteristics (under the assumption of sub-critical flow and with a grid resolution of 3 µm, or 1/30 of the orifice diameter) to the moving internal geometry of the injector. Another novelty is the capability of modeling the compressibility of the liquid and the gas phase while maintaining a sharp interface between the two.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Mean Value Based Sizing and Simulation Model of a Hydrogen Fueled Spark-Ignition Internal Combustion Engine

2007-09-17
2007-01-3789
A mean value based sizing and simulation model has been developed for use in the conceptual design and sizing of hydrogen fueled spark-ignition internal combustion engines (HICE) in the aerospace industry, here ‘mean value’ includes mean effective pressure (MEP), mean piston speed, mean specific power, etc. This model is developed since there is currently no such model readily available for this purpose. When sizing the HICE, statistical data and common practice for gasoline internal combustion engines (GICE) are used to obtain preliminary sizes of the HICE, such as total cylinder volume, bore and stroke; to capture the effect of low volumetric efficiency, the preliminary results are adjusted by a volumetric correction factor until the cycle parameters of HICE are reasonable. A non-dimensional combustion model with hydrogen as fuel is incorporated with existing GICE methods. With this combustion model, the high combustion temperature and high combustion pressure are captured.
Technical Paper

A Measurement Technique for Characterizing Performance Degradation Caused by EMI on Radio Equipment

2007-10-30
2007-01-4203
By using a radio frequency (RF) audio distortion measurement test setup, communication devices can be evaluated for degradation caused by electromagnetic interference (EMI) from active vehicle components. This measurement technique can be used to determine the performance of a radio receiver under a variety of conditions. The test setup consists of making measurements on a baseband audio signal that is sent to the device under test (receiver) via over-the-air RF transmissions. Once a baseline is established, active components on the vehicle can be powered on to determine their contribution to the receiver's degradation. The degradation measured is a result of distortion caused by conducted, radiated, and/or coupled EMI from active components into the receiver's passband.
Journal Article

A Novel Approach to Assess Diesel Spray Models using Joint Visible and X-Ray Liquid Extinction Measurements

2015-04-14
2015-01-0941
Spray processes, such as primary breakup, play an important role for subsequent combustion processes and emissions formation. Accurate modeling of these spray physics is therefore key to ensure faithful representation of both the global and local characteristics of the spray. However, the governing physical mechanisms underlying primary breakup in fuel sprays are still not known. Several theories have been proposed and incorporated into different engineering models for the primary breakup of fuel sprays, with the most widely employed models following an approach based on aerodynamically-induced breakup, or more recently, based on liquid turbulence-induced breakup. However, a complete validation of these breakup models and theories is lacking since no existing measurements have yielded the joint liquid mass and drop size distribution needed to fully define the spray, especially in the near-nozzle region.
Journal Article

A Numerical Approach for the Analysis of Hydrotreated Vegetable Oil and Dimethoxy Methane Blends as Low-Carbon Alternative Fuel in Compression Ignition Engines

2023-04-11
2023-01-0338
Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are getting serious interest within the scientific community and industry. Dimethoxy methane (OME1) is the smaller molecule among this group, which is of special interest due to its low soot formation. However, its application is still limited mainly due to its low lower heating value. In contrast, other fuel alternatives like hydrogenated vegetable oil (HVO) are considered as drop-in solutions thanks to their very similar properties and molecular composition to that of fossil diesel. However, their pollutant emission improvement is limited.
Technical Paper

A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations

2013-04-08
2013-01-1095
Traditional Lagrangian spray modeling approaches for internal combustion engines are highly grid-dependent due to insufficient resolution in the near nozzle region. This is primarily because of inherent restrictions of volume fraction with the Lagrangian assumption together with high computational costs associated with small grid sizes. A state-of-the-art grid-convergent spray modeling approach was recently developed and implemented by Senecal et al., (ASME-ICEF2012-92043) in the CONVERGE software. The key features of the methodology include Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, which enables use of cell sizes smaller than the nozzle diameter. This modeling approach was rigorously validated against non-evaporating, evaporating, and reacting data from the literature.
Technical Paper

A Numerical Study of a Free Piston IC Engine Operating on Homogeneous Charge Compression Ignition Combustion

1999-03-01
1999-01-0619
A free piston, internal combustion (IC) engine, operating at high compression ratio (∼30:1) and low equivalence ratio (ϕ∼0.35), and utilizing homogeneous charge compression ignition combustion, has been proposed by Sandia National Laboratories as a means of significantly improving the IC engine's cycle thermal efficiency and exhaust emissions. A zero-dimensional, thermodynamic model with detailed chemical kinetics, and empirical scavenging, heat transfer, and friction component models has been used to analyze the steady-state operating characteristics of this engine. The cycle simulations using hydrogen as the fuel, have indicated the critical factors affecting the engine's performance, and suggest the limits of improvement possible relative to conventional IC engine technologies.
Technical Paper

A Numerical and Experimental Investigation on Different Strategies to Evaluate Heat Release Rate and Performance of a Passive Pre-Chamber Ignition System

2022-03-29
2022-01-0386
Pre-chamber ignition has demonstrated capability to increase internal combustion engine in-cylinder burn rates and enable the use of low engine-out pollutant emission combustion strategies. In the present study, newly designed passive pre-chambers with different nozzle-hole patterns - that featured combinations of radial and axial nozzles - were experimentally investigated in an optically accessible, single-cylinder research engine. The pre-chambers analyzed had a narrow throat geometry to increase the velocity of the ejected jets. In addition to a conventional inductive spark igniter, a nanosecond spark ignition system that promotes faster early burn rates was also investigated. Time-resolved visualization of ignition and combustion processes was accomplished through high-speed hydroxyl radical (OH*) chemiluminescence imaging. Pressure was measured during the engine cycle in both the main chamber and pre-chamber to monitor respective combustion progress.
Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Technical Paper

A Probabilistic Design Methodology for Commercial Aircraft Engine Cycle Selection

1998-09-28
985510
The objective of this paper is to examine ways in which to implement probabilistic design methods in the aircraft engine preliminary design process. Specifically, the focus is on analytically determining the impact of uncertainty in engine component performance on the overall performance of a notional large commercial transport, particularly the impact on design range, fuel burn, and engine weight. The emphasis is twofold: first is to find ways to reduce the impact of this uncertainty through appropriate engine cycle selections, and second is on finding ways to leverage existing design margin to squeeze more performance out of current technology. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the overall aircraft performance (it is on the same order of magnitude as the impact of the cycle itself).
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Qualitative Evaluation of Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine

2007-04-16
2007-01-1467
In an optically-accessible single-cylinder engine fuelled with hydrogen, OH* chemiluminescence imaging and planar laser induced fluorescence (PLIF) are used to qualitatively evaluate in-cylinder mixture formation. The experiments include measurements for engine operation with hydrogen injection in-cylinder either prior to or after intake valve closure (IVC). Pre-IVC injection is used to produce a near homogeneous mixture in-cylinder to establish a baseline comparison for post-IVC injection. To assess the effects of injection pressure on mixture formation, two injection pressures are used for post-IVC injection. For post-IVC injection with start of injection (SOI) coincident with IVC, mixture distribution is similar to pre-IVC injection and there are little differences between the two injection pressures. With retard of SOI from IVC, mixture inhomogeneities increase monotonically for both injection pressures.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
X