Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Analyzing the Cycle-to-Cycle Variations of Vapor and Liquid Phases of Evaporating SIDI Sprays via Proper Orthogonal Decomposition Technique

2015-09-01
2015-01-1901
In this study, the spray characteristics of three multi-hole injectors, namely a 2-hole injector, a 4-hole injector, and a 6-hole injector were investigated under various superheated conditions. Fuel pressure was kept constant at 10MPa. Fuel temperature varied from 20°C to 85°C, and back pressure ranged from 20kPa to 100kPa. Both liquid phase and vapor phase of the spray were investigated via laser induced exciplex fluorescence technique. Proper orthogonal decomposition technique was applied to analyze the cycle-to-cycle variations of the liquid phase and vapor phase of the fuel spray separately. Effects of fuel temperature, back pressure, superheated degree and nozzle number on spray variation were revealed. It shows that higher fuel temperature led to a more stable spray due to enhanced evaporation which eliminated the fluctuating structures along the spray periphery. Higher back pressure led to higher spray variation due to increased interaction between spray and ambient air.
Technical Paper

Influence of Component Proportion on Multi-Component Surrogate Fuel Spray Characteristics under Subcooled and Superheated Conditions

2019-12-19
2019-01-2250
Good comprehension of multi-component fuel spray behavior is essential for the improved performance of GDI engines. In this study, the spray characteristics of three distinct multi-component surrogate fuels with various proportions of n-pentane, iso-octane, and n-decane were investigated using multiple diagnostics including macroscopic imaging, planar laser Mie-scattering, and phase doppler interferometry (PDI). These surrogate fuels were used to mimic different distillation characteristics of regular unleaded gasoline with different vaporization behaviors. Test measurements show that under subcooled test conditions, the spray geometry is mainly influenced by dynamic viscosity. On the contrary, under superheated test conditions, spray geometry is controlled by the specific component of fuel which has the highest vapor pressure. A triangular methodology is created to evaluate the influence of component proportion on spray characteristics.
Technical Paper

Transient Flow Field Behavior after End of Spray Injection Under Different Injection and Flash Boiling Conditions

2023-09-29
2023-32-0092
The continuous improvement of gasoline direct injection (GDI) engine is largely attributed to the enhanced understanding of air-fuel mixing and combustion processes. This work investigates the transient behavior of the ambient flow fields of hexane spray using the combined diagnostics of fluorescent particle image velocimetry (FPIV) and mie scattering. A hybrid analysis approach is proposed to investigate the residual effect of spray injection on ambient flow fields, including flow similarity measurement, entrainment velocity calculation, and vortex strength detection. The work investigates the residual effect under different injection durations, injection pressure, and flash-boiling extent of the spray, and unveils correlation between vortex strength and the endurance of the residual effect.
X