Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Technical Paper

An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel

2016-04-05
2016-01-0841
Most modern high-pressure common rail diesel fuel injection systems employ an internal pressure equalization system in order to support needle lift, enabling precise control of the injected fuel mass. This results in the return of a fraction of the high-pressure diesel back to the fuel tank. The diesel fuel flow occurring in the injector spill passages is expected to be a cavitating flow, which is known to promote fuel ageing. The cavitation of diesel promotes nano-particle formation through induced pyrolysis and oxidation, which may result in deposits in the vehicle fuel system. A purpose-built high-pressure cavitation flow rig has been employed to investigate the stability of unadditised crude-oil derived diesel and paraffin-blend model diesel, which were subjected to continuous hydrodynamic cavitation flow across a single-hole research diesel nozzle.
Technical Paper

Combustion and Emissions Performance Analysis of Conventional and Future Fuels using Advanced CAE

2013-10-14
2013-01-2673
In recent years, there has been rapid progress in characterizing the detailed chemical kinetics associated with the oxidation of liquid hydrocarbons and their blends. However adding these fuel models to the industrial engineer's toolkit has proven a major challenge due to issues associated with high CPU cost and the poor suitability of many of the most promising and well known fuel models to IC engine applications. This paper demonstrates the state-of-the-art in the analysis and modelling of current and future transportation fuels or fuel blends for internal combustion engine applications. First-of-all, a benchmarking of eleven representative fuel models (39 to 1034 species in size) is carried out at engine/engine-like operating conditions by adopting the standard Research Octane and Cetane Number test data for comparison. Next, methods to construct a fuel model for a commercial fuel are outlined using a simple, yet robust surrogate mapping technique.
Technical Paper

Development of an Injector Deposit Formation Test Method for a Medium-Duty Diesel Engine

2015-09-01
2015-01-1914
In a modern diesel engine, a high fuel injection pressure is achieved by a common-rail system. Therefore, it is important to understand the effects of fuel properties on engine performances because a diesel fuel could deteriorate inside an injector at such severe conditions. The test methods so far basically use the fuel with pro-fouling agent to form deposit on injector. In this study, a novel test procedure was developed to evaluate the effect of the use of the fuel with and without zinc contaminant on injector performance. With Zn doped European specification B7 fuel (7% biodiesel) as a reference, the test result showed that an engine torque decreased almost lineally over time, and the overall torque drop was 9% after 300 hours. The investigation of the dismantled injector after the test revealed that the deposit was not formed on the sliding parts of the injector, but on the nozzle hole surface.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Journal Article

Linking the Physical Manifestation and Performance Effects of Injector Nozzle Deposits in Modern Diesel Engines

2015-04-14
2015-01-0892
The formation of deposits within injector nozzle holes of common-rail injection fuel systems fitted to modern diesel cars can reduce and disrupt the flow of fuel into the combustion chamber. This disruption in fuel flow results in reduced or less efficient combustion and lower power output. Hence there is sustained interest across the automotive industry in studying these deposits, with the ultimate aim of controlling them. In this study, we describe the use of Scanning Electron Microscopy (SEM) imaging to characterise fuel injector hole deposits at intervals throughout an adaptation of the CEC Direct Injection Common Rail Diesel Engine Nozzle Coking Test, CEC F-98-08 (DW10B test)[1]. In addition, a similar adaptation of a previously published Shell vehicle test method [2] was employed to analyse fuel injector hole deposits from a fleet of Euro 5 vehicles. During both studies, deposits were compared after fouling and after subsequent cleaning using a novel fuel borne detergent.
Technical Paper

The Effects of Driveability on Emissions in European Gasoline Vehicles

2000-06-19
2000-01-1884
Fuel volatility and vehicle characteristics have long been recognised as important parameters influencing the exhaust emissions and the driveability of gasoline vehicles. Limits on volatility are specified in a number of world-wide / national fuel specifications and, in addition, many Oil Companies monitor driveability performance to ensure customer satisfaction. However, the relationship between driveability and exhaust emissions is relatively little explored. A study was carried out to simultaneously measure driveability and exhaust emissions in a fleet of 10 European gasoline vehicles. The vehicles were all equipped with three-way catalysts and single or multi-point fuel injection. The test procedure and driving cycle used were based on the European Cold Weather Driveability test method.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
X