Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Benefits of a Higher Octane Standard Gasoline for the U.S. Light-Duty Vehicle Fleet

This paper explores the benefits that would be achieved if gasoline marketers produced and offered a higher-octane gasoline to the U.S. consumer market as the standard grade. By raising octane, engine knock constraints are reduced, so that new spark-ignition engines can be designed with higher compression ratios and boost levels. Consequently, engine and vehicle efficiencies are improved thus reducing fuel consumption and greenhouse gas (GHG) emissions for the light-duty vehicle (LDV) fleet over time. The main objective of this paper is to quantify the reduction in fuel consumption and GHG emissions that would result for a given increase in octane number if new vehicles designed to use this higher-octane gasoline are deployed. GT-Power simulations and a literature review are used to determine the relative brake efficiency gain that is possible as compression ratio is increased.
Technical Paper

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 1-Quantifying Charge Cooling

Gasoline/ethanol fuel blends have significant synergies with Spark Ignited Direct Injected (SI DI) engines. The higher latent heat of vaporization of ethanol increases charge cooling due to fuel evaporation and thus improves knock onset limits and efficiency. Realizing these benefits, however, can be challenging due to the finite time available for fuel evaporation and mixing. A methodology was developed to quantify how much in-cylinder charge cooling takes place in an engine for different gasoline/ethanol blends. Using a turbocharged SI engine with both Port Fuel Injection (PFI) and Direct Injection (DI), knock onset limits were measured for different intake air temperatures for both types of injection and five gasoline/ethanol blends. The superior charge cooling in DI compared to PFI for the same fuel resulted in pushing knock onset limits to higher in-cylinder maximum pressures. Knock onset is used as a diagnostic of charge cooling.
Journal Article

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 2-Effective Octane Numbers

Spark Ignited Direct Injection (SI DI) of fuel extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the large in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in direct injection (DI) is therefore especially advantageous due to the high heat of vaporization of ethanol. In addition to the thermal benefit due to charge cooling, ethanol blends also display superior chemical resistance to autoignition, therefore allowing the further extension of knock limits. Unlike the charge cooling benefit which is realized mostly in SI DI engines, the chemical benefit of ethanol blends exists in Port Fuel Injected (PFI) engines as well. The aim of this study is to separate and quantify the effect of fuel chemistry and charge cooling on knock. Using a turbocharged SI engine with both PFI and DI, knock limits were measured for both injection types and five gasoline-ethanol blends.
Journal Article

Coordinated Strategies for Ethanol and Flex Fuel Vehicle Deployment: A Quantitative Assessment of the Feasibility of Biofuel Targets

The goal of this paper is to quantitatively assess the implications of congressionally mandated biofuel targets on requirements for ethanol blending, distribution, and usage in spark ignition engines in the U.S. light-duty vehicle fleet. The “blend wall” is a term that refers to the maximum amount of ethanol that can be blended into the gasoline pool without exceeding the legal volumetric blend limit of 10%. Beyond the blend wall, the additional ethanol fuel must be used in higher blends of ethanol like E85. Once the blend wall is reached, the existing fleet of flex fuel vehicles (FFVs) will be required to use E85 for some percentage of vehicle miles traveled (VMT) in order to achieve the Renewable Fuel Standard (RFS) targets.