Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Process to Predict Friction in an Automotive Valve Train

1990-09-01
901728
A study was conducted using a combination of elastohydrodynamic lubrication (EHD) theory, classical boundary and hydrodynamic lubrication principles, and empirical relationships to characterize the mechanical losses from gasoline engine valve trains. The result was a comprehensive analytical methodology that serves as an excellent design tool when determining a first approximation of valve train friction.
Technical Paper

DEVELOPMENT OF A CNG ENGINE

1991-02-01
910881
Impending emissions regulations for diesel engines, specifically exhaust particulate emissions have caused engine manufacturers to once again examine the potential of alternative fuels. Much interest has centered around compressed natural gas (CNG) due to its potential for low particulate and NOx emissions. Natural gas engine development projects have tended toward the use of current gasoline engine technology (stoichiometric mixtures, closed-loop fuel control, exhaust catalysts) or have applied the results of previous research in lean-burn gasoline engines (high-turbulence combustion chambers). These technologies may be inappropriate for foreseeable emissions targets in heavy-duty natural gas engines.
Technical Paper

Mixture Preparation Measurements

1995-02-01
950069
A technique was demonstrated that can quantify the state of mixture preparation during the critical periods of ignition and very early flame development in a “production” spark-ignited engine. To determine the degree of stratification and vaporization two fast-response hydrocarbon (HC) probes were placed in a specially adapted spark plug. Data from the HC analyzer was correlated with cylinder pressure data to relate changes in mixture preparation to classic engine measures, such as indicated mean effective pressure (IMEP) and ignition delay.
X