Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

42-Volt Electric Air Conditioning System Commissioning and Control for a Class-8 Tractor

2004-03-08
2004-01-1478
The electrification of accessories using a fuel cell as an auxiliary power unit reduces the load on the engine and provides opportunities to increase propulsion performance or reduce engine displacement. The SunLine™ Class 8 tractor electric accessory integration project is a United States Army National Automotive Center (NAC™) initiative in partnership with Cummins Inc., Dynetek™ Industries Ltd., General Dynamics C4 Systems, Acumentrics™ Corporation, Michelin North America, Engineered Machine Products (EMP™), Peterbilt™ Motors Company, Modine™ Manufacturing and Masterflux™. Southwest Research Institute is the technical integration contractor to SunLine™ Services Group. In this paper the SunLine™ tractor electric Air Conditioning (AC) system is described and the installation of components on the tractor is illustrated. The AC system has been designed to retrofit into an existing automotive system and every effort was made to maintain OEM components whenever modifications were made.
Technical Paper

A Bench Technique for Evaluating High Temperature Oxidation and Corrosion Tendencies of Automotive Crankcase Lubricants

1968-02-01
680538
A technique for evaluating high temperature oxidation and corrosion tendencies of automotive crankcase lubricants is described. The technique utilizes a versatile bench apparatus which, with a minimum of modification, can be used for either evaluating thermal oxidation stability of gear lubricants or oxidation-corrosion tendencies of automotive crankcase lubricants. The apparatus is relatively compact and requires a minimal lubricant sample. Design of the apparatus permits close control of all operating parameters and provides satisfactory test data repeatability. Retainable copper-lead test bearings are used as the indicator in predicting a pass or fail of fully formulated crankcase lubricants as in the case of the CRC L-38-559 (Federal Test Method 3405) technique. Engine and bench test data are compared to illustrate the capabilities of this new bench technique.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

A Comprehensive CFD-FEA Conjugate Heat Transfer Analysis for Diesel and Gasoline Engines

2019-04-02
2019-01-0212
As the efforts to push capabilities of current engine hardware to their durability limits increases, more accurate and reliable analysis is necessary to ensure that designs are robust. This paper evaluates a method of Conjugate Heat Transfer (CHT) analysis for a gasoline and a diesel engine that combines combustion Computational Fluid Dynamics (CFD), engine Finite Element Analysis (FEA), and cooling jacket CFD with the goal of obtaining more accurate temperature distribution and heat loss predictions in an engine compared to standard de-coupled CFD and FEA analysis methods. This novel CHT technique was successfully applied to a 2.5 liter GM LHU gasoline engine at 3000 rpm and a 15.0 liter Cummins ISX heavy duty diesel engine operating at 1250 rpm. Combustion CFD simulations results for the gasoline and diesel engines are validated with the experimental data for cylinder pressure and heat release rate.
Technical Paper

A Comprehensive Numerical Approach to Predict Thermal Runaway in Li-Ion Battery Packs

2021-04-06
2021-01-0748
With the increasing level of electrification of on-road, off-road and stationary applications, use of larger lithium-ion battery packs has become essential. These packs require large capital investments on the order of millions of dollars and pose a significant risk of self-annihilation without rigorous safety evaluation and management. Testing these larger battery packs to validate design changes can be cost prohibitive. A reliable numerical simulation tool to predict battery thermal runaway under various abuse scenarios is essential to engineer safety into the battery pack design stage. A comprehensive testing & simulation workflow has been established to calibrate and validate the numerical modeling approach with the test data for each of the individual sub model - electrochemical, internal short circuit and thermal abuse model. A four-equation thermal abuse model was built and validated for lithium-ion 21700 form factor cylindrical cells using NCA cathodes.
Technical Paper

A Design Tool for Producing 3D Solid Models from Sketches

2004-03-08
2004-01-0482
A novel design tool that produces solid model geometry from computer-generated sketches was developed to dramatically increase the speed of component development. An understanding of component part break-up and section shape early in the design process can lead to earlier part design releases. The concept provides for a method to create 3-dimensional (3D) solid models from 2-dimensional (2D) digital image sketches. The traditional method of creating 3-dimensional surface models from sketches or images involves creation of typical sections and math surfaces by referencing the image only. There is no real use of the sketch within the math environment. An interior instrument panel and steering wheel is described as an example. The engineer begins with a 2-dimensional concept sketch or digital image. The sketch is scaled first by determining at least three known feature diameters.
Technical Paper

A Dual-Use Hybrid Electric Command and Control Vehicle

2001-11-12
2001-01-2775
Until recently, U.S. government efforts to dramatically reduce emissions, greenhouse gases and vehicle fuel consumption have primarily focused on passenger car applications. Similar aggressive reductions need to be extended to heavy vehicles such as delivery trucks, buses, and motorhomes. However, the wide range of torques, speeds, and powers that such vehicles must operate under makes it difficult for any current powertrain system to provide the desired improvements in emissions and fuel economy. Hybrid electric powertrains provide the most promising, near-term technology that can satisfy these requirements. This paper highlights the configuration and benefits of a hybrid electric powertrain capable of operating in either a parallel or series mode. It describes the hybrid electric components in the system, including the electric motors, power electronics and batteries.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

A Flexible Engine Control Architecture for Model-based Software Development

2007-04-16
2007-01-1623
The fierce competition and shifting consumer demands require automotive companies to be more efficient in all aspects of vehicle development and specifically in the area of embedded engine control system development. In order to reduce development cost, shorten time-to-market, and meet more stringent emission regulations without sacrificing quality, the increasingly complex control algorithms must be transportable and reusable. Within an efficient development process it is necessary that the algorithms can be seamlessly moved throughout different development stages and that they can be easily reused for different applications. In this paper, we propose a flexible engine control architecture that greatly boosts development efficiency.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

A History of Mack Engine Lubricant Tests from 1985-2005: Mack T-7 through Mack T-12

2005-10-24
2005-01-3713
As on-highway, heavy-duty diesel engine designs have evolved to meet tighter emissions specifications and greater customer requirements, the crankcase environment for heavy-duty engine lubricants has changed. Engine lubricant quality is very important to help ensure engine durability, engine performance, and reduce maintenance downtime. Beginning in the late 1980's, a new Mack genuine oil specification and a new American Petroleum Institute (API) heavy-duty engine lubricant category have been introduced with each new U.S. heavy-duty, on-highway emissions specification. This paper documents the history and development of the Mack T-7, T-8, T-8A, T-8E, T-9, T-10, T-11, and T-12 engine lubricant tests.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multi-hop Mobile Networking Test-bed for Telematics

2005-04-11
2005-01-1484
An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the real-world performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A New Engine Test for the Development of Heavy Duty Diesel Engine Oils for Engines with Exhaust Gas Recirculation: The Mack T-10 Test

2000-06-19
2000-01-1985
More stringent emission legislation has been a driver for changes in the design of Heavy Duty Diesel engines since the 1980s. Optimization of the combustion processes has lead to significant reductions of exhaust emission levels over the years. However, in the year 2002, diesel engines in the USA will have to meet an even more stringent set of emission requirements. Expectations are that this will force most engine builders to incorporate Exhaust Gas Recirculation (EGR). Several studies of the impact of EGR on lubricant degradation have shown increased levels of contamination with soot particles and acidic components. Both of these could lead to changes in lubricant requirements. The industry is developing a new specification for diesel engine lubricants, PC-9, using test procedures incorporating engines with EGR.
Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
X