Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development and Testing Update on the MX-2 Neutral Buoyancy Space Suit Analogue

2004-07-19
2004-01-2343
The University of Maryland Space Systems Laboratory has developed a system that replicates some limited aspects of pressure suits to facilitate neutral buoyancy research into EVA bioinstrumentation, advanced EVA training, and EVA/robotic interactions. After a two year upgrade from its MX-1 predecessor, the MX-2 space suit analogue is currently undergoing a variety of system integration tests in preparation for initial operational testing, leading to routine use for EVA simulation and as a testbed for advanced space suit technology. The MX-2 is built around a hard upper torso with integrated hemispherical helmet and rear-entry hatch. Three-layer soft-goods are used for the arms and lower torso, while an open loop air system regulates suit pressure to 3 psid. Wrist disconnects allow the use of standard EMU or Orlan gloves, or experimental gloves such as the mechanical counterpressure gloves and power-assisted gloves developed previously by the SSL.
Journal Article

Minimum Functionality Lunar Habitat Element Design: Requirements and Definition of an Initial Human Establishment on the Moon

2009-07-12
2009-01-2369
This paper summarizes the activities of the University of Maryland Space Systems Laboratory in performing a design study for a minimum functionality lunar habitat element for NASA's Exploration Systems Mission Directorate. By creating and deploying a survey to personnel experienced in Earth analogues, primarily shipboard and Antarctic habitats, a list of critical habitat functions was established, along with their relative importance and their impact on systems design/implementation. Based on a review of relevant past literature and the survey results, four habitat concepts were developed, focused on interior space layout and preliminary systems sizing. Those concepts were then evaluated for habitability through virtual reality (VR) techniques and merged into a single design. Trade studies were conducted on habitat systems, and the final design was synthesized based on all of the results.
Technical Paper

Neutral Buoyancy Technologies for Extended Performance Testing of Advanced Space Suits

2003-07-07
2003-01-2415
Performance of new space suit designs is typically tested quantitatively in laboratory tests, at both the component and integrated systems levels. As the suit moves into neutral buoyancy testing, it is evaluated qualitatively by experienced subjects, and used to perform tasks with known times in earlier generation suits. This paper details the equipment design and test methodology for extended space suit performance metrics which might be achieved by appropriate instrumentation during operational testing. This paper presents a candidate taxonomy of testing categories applicable to EVA systems, such as reach, mobility, workload, and so forth. In each category, useful technologies are identified which will enable the necessary measurements to be made. In the subsequent section, each of these technologies are examined for feasibility, including examples of existing technologies where available.
Technical Paper

Role Definition and Task Allocation for a Cooperative EVA and Robotic Team

2009-07-12
2009-01-2529
Employing a cooperative human and robotic team has the potential to greatly reduce human workload during space missions and create more efficient operational teams. The Hubble Space Telescope Servicing Mission 3A tasks were assessed and modeled with three different human and robot team pairings to elucidate the difference to team performance. Tasks were allocated to the standard two-human EVA crew and a robotic agent for each of the cases. The schedules reduce the human crew's involvement time in each EVA day's activities by rearranging subtasks to minimize the human crew's wait time. This work examines three agent participation scenarios and their effect on the expected efficiency of the cooperative team during mission activities.
Technical Paper

System Overview and Operations of the MX-2 Neutral Buoyancy Space Suit Analogue

2006-07-17
2006-01-2287
A fully operational space suit analogue for use in a neutral buoyancy environment has been developed and tested by the University of Maryland’s Space Systems Laboratory. Repeated manned operations in the Neutral Buoyancy Research Facility have shown the MX-2 suit analogue to be a realistic simulation of operational EVA pressure suits. The suit is routinely used for EVA simulation, providing reasonable joint restrictions, work envelopes, and visual and audio environments comparable to those of current EVA suits. Improved gloves and boots, communications carrier assembly, in-suit drink bag and harness system have furthered the semblance to EVA. Advanced resizing and ballasting systems have enabled subjects ranging in height from 5′8″ to 6′3″ and within a range of 120 lbs to obtain experience in the suit. Furthermore, integral suit instrumentation facilitates monitoring and collection of critical data on both the suit and the subject.
X