Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study of Source Vibration Between the Electric Motor and Internal Combustion Engine Application for Passenger Vehicles

2021-09-21
2021-01-1243
In an electric vehicle, internal combustion engines are replaced by the electric motor. As a result, the signature of source vibration changes. The noise, vibration and harshness (NVH) issues are entirely different in electric vehicle (EV) compared to internal combustion engine (ICE) due to the change in source vibration. The outline of this paper is a comparative study of source vibration, the challenges to address various noise issues related to source vibration and the isolation methodology. A case study is presented to show the different methods of treatment required to mitigate source vibration issues during the electric vehicle development program. Keywords: Engine, Motor, vibration
Technical Paper

A Method to Evaluate Impact of Power Steering on Fuel Economy and Optimization

2019-01-09
2019-26-0309
Vehicle manufacturers strive hard to achieve best in class fuel economy. Apart from light weighting of the structures, driveline optimization and reduction of tire rolling resistance, tapping of parasitic losses is also important and helps to optimize the design of auxiliary power consuming systems. One of such system studied in this work is power steering system. The effect of parasitic losses on fuel economy is predominant for small commercial vehicle compare to heavy vehicles. The evaluation of deterioration in the fuel economy due to implementation of power steering system on one of the small commercial vehicle is carried out using multiple virtual simulation tools. Virtual route profile is modelled using longitude, latitude and altitude data captured through GPS and steering duty cycle is mapped in terms of steering rotation angle. A system level model of hydraulic power steering system is developed.
Technical Paper

A New Approach to Check the Heath of Engine Mounting & Suspension Bolted Joints

2022-03-29
2022-01-0634
The torque required to tighten any threaded joint is different from the necessary torque to untighten threaded bolt or nut, and it is not observed or widely known since this is a regular and straightforward operation. Typically the torque needed to untighten a newly tightened clamp is around 10% to 30% less than the torque to stretch it further. During tightening a threaded bolt, a significant amount of torque required to overcome friction in the threads and under the nut face. The proportion of the torque used to overcome frictional resistance depends upon the friction value. When we tighten a joint with a coefficient of friction of 0.12, only about approximately 14% of the torque required to stretch the fastener producing the clamp load with 86% of the torque is lost overcoming friction. The torque needed to pull the bolt always acts in the untightening direction, resulted in untightening torque lags behind the tightening torque.
Technical Paper

A Novel Spot Weld Failure Prediction Methodology in Safety Simulations

2021-09-22
2021-26-0429
Spot-weld joinery plays a major role in maintaining structural integrity of vehicle during an accident scenario. Robust failure definitions are important for accurate prediction of spot-weld failure in crash safety simulations. Spot welds have a complex metallurgical structure, consisting of fusion and heat affected zones. Identifying material failure definitions for huge number of spot-weld joint combinations in a typical Body in White (BIW) of a vehicle is highly challenging. In conventional LS-DYNA-MAT100 material model, spot-weld failure prediction accuracy is limited under complex crash loading scenarios, especially angular and bending load conditions. In order to enhance the failure predictions, a novel mathematical failure model is developed by considering instantaneous resultant loading along with bending moment as a key failure parameter to determine spot weld joint failure.
Technical Paper

A Robust Solution for a Power-Train Mounting System for Automotive NVH Refinements

2015-01-14
2015-26-0140
Production variations of a heavy duty truck for its vibrations were measured and then analyzed through an Ishikawa diagram. Noise and Control factors of the truck idle shake were indentified. The major cause was found to be piece to piece variations of its power-train (PT) rubber mounts. To overcome the same, a new nominal level of the mount stiffness was sought based on minimization of a cost function related to vibration transmissibility and fatigue damage of the mounts under dynamic loadings. Physical prototypes of such mounts were proved to minimize the variations of the driver's seat shake at idling among various trucks of the same design. These learning's are useful for design of various subsystems or components to refine the full vehicle-Noise Vibration Harshness (NVH) at the robust design level.
Technical Paper

A Unique and Novel Approach for Increasing the Life of Automotive Audio Signaling Device

2014-04-01
2014-01-0237
Automotive Audio Signaling system is very vital and is controlled by local regulatory requirements. In India, usage of horn is very frequent due to highly congested traffic conditions, and is in the order of 10 to 12 times per kilometer. This results in the deterioration of the “contact”, which enables the functioning of the device. Hence the device requires premature replacement or frequent tuning, which are time consuming and results an increase in warranty costs and cost of service as well. Thus, to overcome this problem a unique and novel approach is proposed in this paper which enhances the life of the automobile horn, by implementing an additional pair of Contacts on circuit breakers, providing a parallel path for the power supply. This effort ensures that the life of the horn is increased by 5 times than the existing design.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Technical Paper

Air Intake System Optimization for Passenger Car Engine

2019-01-09
2019-26-0044
The customer expectations in the passenger car market are predominantly in the areas of engine/vehicle performance along with NVH refinement. In addition, continuously evolving regulatory emission and crash norms with system cost considerations bring out multiple challenges on to design engineers. One of the vehicle systems that has its footprints on all of the above requirements is the engine air intake system. In this paper, using multidisciplinary approach we discuss the impact of air intake system design of a 3-cylinder gasoline engine on different attributes of customer requirements. The primary function of the air intake system is to provide filtered air to the engine. However, this paper explains how requirements like engine performance, NVH refinement, regulatory and styling, durability, servicing and system cost are affected by intake system design parameters.
Technical Paper

An Integrated Approach Using Multi-Body Dynamics Simulation & Driving Simulator towards Chassis Development for an SUV Vehicle

2024-01-16
2024-26-0050
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase.
Technical Paper

Analytical Estimation of Clutch Life for Manual Transmission

2019-04-02
2019-01-0335
The clutch is the connecting link between engine and the power train. It connects and disconnects the engine to the gearbox as per the wish of the driver. Clutch has a friction disc which acts like a fuse wire which wears in the process of the connection. This paper tries to calculate the clutch life analytically (In terms of Kms. run by vehicle), of automotive vehicles having manual transmission. As the clutch engages and disengages the engine to the gearbox, during this time due to slippage, energy is dissipated which results in the wear of the clutch disc. It calculates life based on the volumetric wear of the clutch disc and wear allowance available. The work done by other people in this domain include the empirical estimation of clutch life based on the past data, effect of the surface topography on the friction characteristics of the wet clutches, modeling of clutch housing and facing temperature for the estimation of the clutch life of a manual transmission etc.
Technical Paper

Annoying Car Body Squeak & Creak - A Systematic Detection and Prevention Approach

2021-09-22
2021-26-0273
To cope up with the market requirements, OEMs need to react fast and develop advanced and highly refined vehicles keeping in mind multiple factors and Perceived Quality is one of the most important amongst those. Annoying squeak and rattle noises from the vehicle, whether it is new or used car, is the most customer irritant factor; which needs to be addressed in the vehicle development program. BSR (Buzz, Squeak and Rattle) and NVH (Noise, Vibrations and Harshness) performance is the critical in providing quieter experience to the customer and it is becoming more and more important due to transformation from ICE (Internal Combustion Engine) to Hybrid and Electric Powertrains. Among BSR noises, body squeak and creak is the most annoying and difficult to detect and correct, if reported on the prototype test or customer cars. Whereas, squeak and rattles from body fitment and underbody aggregates are relatively easy to address and correct.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Automotive Buzz, Squeak and Rattle Attenuation Technique from Front Suspension Assembly in Passenger Car

2021-08-31
2021-01-1087
BSR noise is an important parameters for customer discomfort. According to a market survey, squeaks and rattles are the third most important customer concern in cars after six months of ownership. The high quality acoustic environment of a car, annoying noises like buzz, squeak, and rattle is related to various parameters such as material assembly, tolerance, aging, humidity, surface contact, and surface hardness. BSR is originated from frictional movement between two parts or from the impact between two parts. The rattle noise is caused when surfaces close to each other move perpendicular to each other due to insufficient attachments or insufficient structural strength. In our study, we have shown the impact of various front suspension component in front suspension assembly on BSR noise and also the method to detect and attenuate the same. A methodical analysis process is shown to identify the contributing part and resolve the BSR issue.
Technical Paper

Automotive Crankshaft Development in Austempered Ductile Iron Casting

2023-05-25
2023-28-1302
The automotive industry is facing a challenge as efficiency improvements are required to address the strict emission norms which in turn requires high performance downsized, lightweight IC engines. The increasing demand for lightweight engine needs high strength to weight ratio materials. To meet high strength to weight ratio, castings are preferable. However due to strength limitations for critical crankshaft applications, it forces to use costly forgings such as micro alloyed forging steel and Martensitic (after heat treatment) forging steel. To reduce the cost impact, high strength Austempered Ductile iron (ADI) casting is developed for crankshaft applications to substitute steel forgings. Austempered Ductile Iron is having an excellent mechanical properties due to aus-ferritic structure. The improved properties of developed ADI Crankshaft over steel forged crankshaft offers additional weight advantage.
Technical Paper

Body Block FE Model Development and Correlation with Physical Tests

2017-01-10
2017-26-0293
Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Technical Paper

Brake Pad Life Monitoring System Using Machine Learning

2024-01-16
2024-26-0032
In the context of vehicular safety and performance, brake pads represent a critical component, ensuring controlled driving and accident prevention. These pads consist of friction materials that naturally degrade with usage, potentially leading to safety issues like delayed braking response and NVH disturbances. Unfortunately, assessing brake pad wear remains challenging for vehicle owners, as these components are typically inaccessible from the outside. Moreover, Indian OEMs have not yet integrated brake pad life estimation features. This research introduces a hybrid machine learning approach for predicting brake pad remaining useful life, comprising three modules: a weight module, utilizing mathematical formulations based on longitudinal vehicle dynamics to estimate vehicle weight necessary for calculating braking kinetic energy dissipation; and temperature and wear modules, employing deep neural networks for predictive modeling.
Technical Paper

Bus Cabin Noise Prediction of Large HVAC System Using Total Noise Method

2023-05-08
2023-01-1126
HVAC system design has an accountability towards acoustic comfort of passengers of a vehicle. Owing to larger cabin volume of a bus, multiple air blowers have to be installed to ensure comfort of passengers. Such multiple blowers produce significant flow induced noise inside the cabin. For commercial success, it becomes essential to predict intensity of such a flow induced noise at very early stages in product development. Conventionally sliding mesh based CFD approach is deployed to predict flow and turbulence noise around each blower. However due to complexity, this method becomes computationally intensive resulting in cost and time inefficiency. Hence it is desirable to innovate around an alternative rapid, reliable prediction method, which ensures quick turnaround of prediction.
Technical Paper

CAE Based Head Form Impact Simulations for Development of Vehicle Interiors

2019-01-09
2019-26-0237
The interior components of a passenger vehicle are designed to provide comfort and safety to its occupants. In the event of accident, vehicle interiors are primary source of injuries when occupants interact with them. Vehicle interiors consists of Instrument panel (IP), center console, seats and controls in front of seating position etc. Severity of the injuries depends on the energy dissipating characteristics, profiles, projections of different interior components. These are assessed by ECE R21 and IS12553 head form impact tests. To evaluate the Head form impact performance on Interior components, Computer Aided Engineering (CAE) simulations are extensively used during the vehicle development. In order to predict failure of plastic components and snap joints which might lead to expose sharp edges, it is critical to model plastic material and snap joint.
Technical Paper

Characterization of TiN Precipitates and It’s Morphology in Spring Steel for Commercial Vehicle Leaf Spring Suspension

2023-05-25
2023-28-1317
Leaf springs are used for vehicle suspension to support the load. These springs are made of flat sections of spring steel in single or in stack of multiple layers, held together in bracketed assembly. The key characteristics of leaf spring are defined as ability to distribute stresses along its length and transmit a load over the width of the chassis structures. The most common leaf spring steels are carbon steels alloyed with Cr and micro-alloyed with Ti, V and Nb. The specific thermomechanical process and alloying elements result in specific strength and fatigue properties for spring steels. The unique properties which facilitate use of spring steel in leaf spring suspensions are ability to withstand considerable twisting or bending forces without any distortion. The microstructure of these steel determines the performance and reflects the process of steel manufacturing. The performance is mainly determined by evaluating fatigue life durability.
X