Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Simulation Accuracy Enhancement for Predicting Powertrain Cooling System Performance

2019-01-09
2019-26-0298
In today’s competitive scenario, the automotive product life cycle has drastically reduced and all Auto OEM’s are coming up with their updated products with lesser development time. These frequent product upgrades are possible due to use of various digital tools during product design and development. Design and optimization of engine coolpack (powertrain cooling unit) to attain engine cooling performance is one of the important parameter during vehicle development or upgrade. Hence, to keep control over development cost and time of delivery, quick and accurate digital validation capability like one dimensional (1D) simulation is the need of the hour. To predict the powertrain cooling (PTC) performance at vehicle concept stage, when physical prototypes are not available, airflow data from similar developed platforms is considered as an input for 1D simulation.
Technical Paper

A Novel Technique to Establish Various Important Characteristic to Analyze Complete Hydraulic Power Steering System using Model Based Design Approach

2017-01-10
2017-26-0259
Steering system deliver a precise directional control to the vehicle chassis and ensure the safe driving at all maneuvers. Hydraulic power assisted system (HPAS) helps drivers to steer by boosting steering assistance of the steering wheel while retaining the road feel. HPAS performance is associated with the design characteristics of rotary valve, steering, suspension, kinematics, brake, tire, vehicle speed and load transfer. Thus a detailed power steering system model is absolutely necessary to evaluate and optimize the performance characteristics. However, many components of HPAS system are proprietary in nature so it is very challenging to get component characteristic of each sub-system for the complete power steering system model. Hence, it is very important to establish a technique to extract all such influencing characteristics with available test facility.
Technical Paper

Air Intake System Optimization for Passenger Car Engine

2019-01-09
2019-26-0044
The customer expectations in the passenger car market are predominantly in the areas of engine/vehicle performance along with NVH refinement. In addition, continuously evolving regulatory emission and crash norms with system cost considerations bring out multiple challenges on to design engineers. One of the vehicle systems that has its footprints on all of the above requirements is the engine air intake system. In this paper, using multidisciplinary approach we discuss the impact of air intake system design of a 3-cylinder gasoline engine on different attributes of customer requirements. The primary function of the air intake system is to provide filtered air to the engine. However, this paper explains how requirements like engine performance, NVH refinement, regulatory and styling, durability, servicing and system cost are affected by intake system design parameters.
Technical Paper

Analysis of Automotive Control Pedals Ergonomics through Mathematical Modelling Based on Human Anthropometry

2017-01-10
2017-26-0252
Vehicle Ergonomics is one of the most vital factor to be considered in vehicle design and development, as the customer wants a comfortable and performance oriented vehicle. An uncomfortable driving posture can lead to painful driving experiences for longer hauls. The control pedals viz. Accelerator, Brake and clutch pedal (ABC Pedals), are the most frequently used parts in the vehicle, their proper positioning with respect to human anthropology is of prime importance, from driver comfort viewpoint. The methodology currently used for optimizing ergonomics with respect to the positioning of pedals in a vehicle included; measuring anthropometric angles manually with the help of H-Point Machine, subjective jury analysis and through software like RAMSIS, JACK, etc. Manual measurement doesn’t give the flexibility of iterations for optimization. The subjective analysis is based on insinuations thereby, cannot be standardized.
Technical Paper

Critique of Torsional Vibration Damper (TVD) Design for Powertrain NVH

2017-01-10
2017-26-0217
Crank train torsional vibration is an important aspect for design and development of Powertrain for NVH refinement and durability. Crank train torsional vibration parameters like angular acceleration of flywheel or twist, depends upon various design parameters like geometry of crankshaft, mass of flywheel, stiffness of clutch, mass of pulley etc. It also depends upon engine operating conditions like engine speed, engine load, combustion peak pressure and combustion pressure variation etc. Most of these parameters are decided by engine power, torque, engine architecture and packaging constraints. Addition of torsional vibration damper (TVD), which works on the principle of tuned dynamic absorber, is commonly deployed design solution to control the torsional vibrations as well as stresses (to improve durability of crank train) induced in crank train assembly at specified modal frequency.
Technical Paper

DFSS to Design Engine Cooling System of Small Gasoline Vehicle with Rear Engine

2019-01-09
2019-26-0037
In automobile design, a rear-engine layout mainly espoused for small entry-level cars and light commercial vehicles for three reasons - packaging, traction, and ease of manufacturing. The aim of this paper is to strategize cooling system of rear-mounted engine of a small gasoline car. Radiator and cooling fan packaged close to engine at rear of the car for simple packaging. Efficient thermal management ensured by robust overheat protection stratagem using EMS software. DFSS, a disciplined problem prevention approach that helps in achieving the most optimum design solution and provides improved and cost effective quality products; is used to finalize an optimum design based on the analysis of the various tests carried out as per DOE [1]. This paper is about designing a distinctive cooling system of a car having rear-mounted engine with rear radiator but front mounted HVAC system [2].
Technical Paper

Design Optimization and Cost Effective Methodology for Column Mounted Single Stalk Combination Switch.

2011-04-12
2011-01-0775
As the automobile industry in India is growing fast and competitive, there is a need to design the vehicle and its parts at most cost effective. This paper gives the details of design optimization and cost effective methodology followed to develop a Single Stalk Combination Switch, without degrading the end user delight. This paper describes various design criteria affecting the combination switch design.
Technical Paper

Design Optimization of Automotive Radiator Cooling Module Fan of Passenger Vehicle for Effective Noise Management Using CFD Technique

2017-01-10
2017-26-0183
An automotive radiator cooling fan has been observed to be an important noise source in a vehicle and with increasing noise refinements, the need for a quieter but effective fan is of utmost importance. Although some empirical prediction techniques are present in literature, they are not sufficiently accurate and cannot give a detailed view of the entire noise spectrum and the various noise prone zones. Hence the need for highly accurate Computational Fluid Dynamics (CFD) study is essential to be able to resolve the minute acoustic stress. Large Eddy Simulation technique in CFD is used to resolve the minute scales of motion in the flow as the sound pressures simulated are very small compared to system level pressures and require immense accuracy. Detailed mesh dependency and Y+ studies are conducted to implement higher accuracy as well as keep mesh requirements within computationally feasible zone.
Technical Paper

Design Optimization of a Mini-Truck Hydraulic Power Steering System Based on Road Load Data (RLD)

2010-04-12
2010-01-0198
Today's automotive industry demands high quality component as well as system designs within very short period of time to provide more value added features to customers on one hand and to meet stringent safety standards on the other. To reconcile economy issues, design optimization has become a key issue. In the last few decades, many OEMs took to analytical tools like Computer-Aided-Engineering (CAE) tools in order to decrease the number of prototype builds and to speed up the time of development cycle. Although such analytical tools are relatively inexpensive to use and faster to implement as compared to the costly traditional design and testing processes: however, there are many variables that CAE tools cannot adequately consider, such as manufacturing processes, assembly, material anisotropy and residual stresses. Therefore, still smart measuring and testing techniques are required to substantiate the CAE results.
Technical Paper

Design and Control of a Light-Weight Drive-Integrated 48 V BLDC Motor for Radiator Fan in Hybrid Vehicle

2015-04-14
2015-01-1207
In small car segment, as far as hybridization is concerned, the space and safety constraint demands use of lower voltage viz., 48 V as compared to >100-volt-systems used for vehicles in other segments. These systems also have advantage of reduced copper weight due to reduced current. As 12 V systems are replaced by the 48 V systems, the auxiliary 12 V loads would necessitate implementation of a DC-DC converter. Considering the requirements of auxiliary loads that are fed from 12 V battery, the power rating of the DC-DC converter can get considerably high resulting in increased size. Hence, it is advisable to re-design at least some of the 12 V auxiliary systems to 48 V such as the radiator fan motor. This, along with the issues faced in the existing PMDC Motor with regard to efficiency and sizing have generated interest to investigate better alternatives for the motor.
Technical Paper

Design for Recycle of Used Up Metal Cutting Tools

2013-03-25
2013-01-0132
For sustainability, industries are now focusing on methodologies for Recycle, Reuse, Repair of a variety of industrial material. Cutting tools used in manufacturing of automobiles have therefore become a part of it. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1] or by redesigning a tool holder for the use of unused cutting edges [2]. An automobile part was redesigned for reuse of a used up tool [3]. By reforming, very large size grinding wheel used for crankshaft grinding can be reused after it gets smaller in diameter during crankshaft grinding operation [4]. This paper deals with two more implemented ideas to show that with a redesigned tool holder it was possible to reuse used up carbide inserts and significantly cut the manufacturing cost in addition to avoid manufacturing of new inserts and thus conserve natural resources.
Technical Paper

Designing In-Cab Sound of Vehicles as per the Customer Driving Pattern on Roads

2019-01-09
2019-26-0170
Vehicle refinement from point of view reduction in its Noise, Vibrations and Harshness (NVH) affects customer’s buying decision and it also directly influences his/her driving experience on road at different speeds. Customer voice, however, indicates that a traditional process of developing design solutions is not aligned with the customers’ expectations. Traditionally the load cases for NVH development are focused only on quietness of passengers’ cabin at idling and in 3rd gear wide open throttle cruising on smooth roads. In reality, the Driver of a premium sedan car or a Sports Utility Vehicle (SUV) or a Compact Utility Vehicle (CUV) expects something different than merely the low sound pressure level inside the cabin. His/her driving pattern over a day plays a crucial role. A vehicle-owner wishes to balance various attributes of the in-cab sound and tactile vibrations at a time.
Technical Paper

Development of Hose and Pipe Assembly for Automatic Transmission Cooling System

2019-01-09
2019-26-0327
Rubber hose and metallic pipe with crimped joints are extensively used in steering system assembly, transmission oil cooler system, brake system etc. to carry hydraulic fluid or lubricants from one place to another. The pipe and rubber hose assembly provides necessary flexibility for complex routing on the vehicle level. Design of hose and pipe assembly for this application are different due to difference in operating pressure and temperature requirement for vehicle application. This paper defines the criteria for design and validation of hose & pipe assembly used to connect automatic transmission with the cooler. Crimped joints are validated for their separation force, leakages, ability to withstand pressure pulsations, burst test etc. Parameters which influence the hose & pipe assembly durability are pipe end flaring dimensions, type of crimping, reinforcement type, its size, material and pattern, rubber material properties, crimping force, effective crimping diameter etc.
Technical Paper

Development of a Polymer Electrolyte Membrane Fuel Cell Stack for a Range Extender for Electric Vehicles

2019-01-09
2019-26-0087
Severe air pollution in cities caused largely by vehicular emissions, which requires urgent remedial measures. As automobiles are indispensable modes of personal and public mobility, pre-emptive efforts are necessary to reduce the adverse effects arising from their operation. A significant improvement in air quality can be achieved through large-scale introduction of vehicles with extremely low emission such as hybrid-electric and zero emission vehicles. Range extension of electric vehicles (EVs) is also of utmost importance to alleviate the handicap of restricted mileage of purely plug-in EVs as compared to conventional vehicles. This paper presents development of a polymer electrolyte membrane (PEM) fuel cell stack used for the range extender electric vehicles. The Fuel cell stack for range extender vehicle operated in a dead end mode using hydrogen and air as open cathode.
Technical Paper

Diagnosis and Elimination of Vehicle Lateral Shake in Passenger Car through Modification of Driveshaft Joints and Engine Mount System

2019-01-09
2019-26-0214
Vehicle lateral shake during take-off is sensitively felt by customers when the vehicle is driven at a low speed under drive away acceleration. The take-off shudder is complained by customers during 1st and 2nd gear take off. Under an engine torque and half shaft angle, the drive-away shudder usually occurs during acceleration to a specific low speed at 1200 to 1600 engine rpm, which makes the vehicle shake severely. A thorough investigation with possible design optimization of mounting system, drive shaft joint and lubrication is done to reduce the lateral vibration. This paper focuses on a passenger car, the take-off shudder of which occurs at a speed between 20 km/h and 30 km/h. The test vehicle is a monocoque construction with front wheel drive east west engine. Vehicle lateral shake is observed during the low gear power train run up in Wide Open Throttle (WOT) condition.
Technical Paper

Drills for Long Oil Holes: A Good Potential for Recycle

2011-04-12
2011-01-1154
Recycle, Reuse, Repair is an established process for sustainability. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1] or by redesigning a tool holder for the use of unused cutting edges [2]. This paper explores the possibility of reuse of HSS drills that are used for making long oil holes in automobile parts like crankcase (cylinder block), cylinder head, crankshaft, etc. Design/manufacture of such drills is peculiar by virtue of their size and length and are also known as thick web high helix drills. Making of oil holes entails use of drills that are 500 to 600 mm long depending on the size of the component. In most of the long oil hole drilling operations, a limited portion of the drill is useable. This is because there is a possibility of fouling of the holding elements with guiding element, or with the part being drilled and the chance of accidental damage to part or machine.
Technical Paper

Effect of Flywheel Mass and Its Center of Gravity on Crankshaft Endurance Limit Safety Factor and Dynamics

2013-04-08
2013-01-1743
The crankshaft is the component which transmits dynamic loads from cylinder pressure and inertial loads in engine operating conditions. Because of its crucial importance in functioning of engine and requisite to sustain high dynamic and torsional loading, crankshaft fatigue life is desired to be higher than the predicted engine operating life. Performance of the crank train in diesel engine applications largely depends on the components of its mass elastic system. Flywheel is one such component whose design affects the life of crankshaft. In the present study, the crank train comprising of torsional vibration damper, crankshaft and flywheel along with clutch cover is considered for analysis. Crankshaft dynamic simulation is performed with multi body dynamics technique, fatigue safety factors of crankshaft are calculated with dynamic loads under engine operating conditions.
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

Engine Mounting System Design Approach for Electric Vehicles

2019-01-09
2019-26-0116
As we are moving towards complete electrification from combustion engine to electric motor, the system design approach also changes due to application. For a range of 100-150 kg EV powertrain weight, number of mounts as well as mount locations, orientations and stiffnesses plays a significant role during system design. The electric powertrains are usually lighter and their mounts are usually stiffer than the mounts for typical combustion engines, the static displacements at dead load are usually lower. However, currently it seems like there is no common direction of all OEM’s regarding the question of how stiff an e-motor mounting system should actually be. Due to the high torque of the EV’s one could even think about switching to a four point mounting instead of a pendulum mounting.
Technical Paper

Evaluation of Anti Scratch Additives on Polypropylene Compound

2013-04-08
2013-01-1391
Automotive Industry is constantly upgrading the value offered on their products at optimized cost. Scratch and mar resistance of interiors and exterior parts, is an important attribute which is linked to perceived quality and value offered to customers. Polypropylene material is optimum material of choice for these parts due to its unique advantages. However, filled polypropylene material has poor scratch and mar resistance. Many techniques for scratch resistance improvement are available such as additions of slip agents, co additives, special fillers, siloxanes, etc. However, some of them may offer some disadvantages like stickiness or tackiness on the surfaces. The choice depends on its effectiveness & cost. This paper deals with design of experiments to evaluate effectiveness of 4 types of additives and their optimum % to give scratch resistance improvement without having detrimental impact on other critical properties.
X