Refine Your Search

Topic

Search Results

Technical Paper

A Charge Sustaining Parallel HEV Application of the Transmotor

1999-03-01
1999-01-0919
An electromechanical gear is presented along with design examples utilizing the electromechanical gear in hybrid electric vehicle drive trains. The designs feature the electromechanical gear (the Transmotor) in place of traditional mechanical transmissions and/or gearing mechanisms. The transmotor is an electric motor suspended by its shafts, in which both the stator and the rotor are allowed to rotate freely. The motor thus can provide positive or negative rotational energy to its shafts by either consuming or generating electrical energy. A design example is included in which the transmotor is installed on the output shaft of an internal combustion engine. In this arrangement the transmotor can either increase or decrease shaft speed by applying or generating electrical power, allowing the ICE to operate with a constant speed.
Technical Paper

A Comparison Study Between Two Parallel Hybrid Control Concepts

2000-03-06
2000-01-0994
Two parallel HEV control concepts: ‘thermostat’ and ‘power split’ are compared in this paper. To achieve a substantial improvement in fuel economy, the ‘thermostat’ or ‘on/off’ control technique intended to improve the fuel efficiency of a series HEV has been adopted and designed for parallel HEV. Among different ‘power split’ concepts developed for parallel hybrids only the ‘electrically assist’ algorithm is considered in this paper. These two control concepts are compared for three parallel HEV architectures: pre-transmission, post-transmission and continuous variable transmission hybrids. The comparison study also includes the effect of hybridization factor-the ratio of the electric power to the total propulsion power. The matrices of comparison are level of performance, energy consumption and exhaust emissions. The SAE J1711 partial charge test procedure is followed.
Technical Paper

A Driving Situation Awareness-Based Energy Management Strategy for Parallel Hybrid Vehicles

2003-06-23
2003-01-2311
A concept of “driving situation awareness”-driven energy management system for parallel hybrid electric vehicles (HEVs) is introduced. The essential feature of the proposed energy management system is to assess the driving environment (in terms of facility type combined with traffic congestion level) using long and short term statistical features of the drive cycle. Subsequently, this knowledge is provided to a system that makes intelligent decisions with respect to the torque distribution and charge sustenance tasks. Simulation work was carried out for the validation of proposed system, and the results reveal its viability for energy management of parallel hybrid vehicles.
Journal Article

A High Efficiency Transmission Architecture for Electric Vehicles

2022-03-29
2022-01-0659
A Dual Power Split Electronic Continuously Variable Transmission (DPS-ECVT) with an input-split, output coupled, split-power-path configuration is proposed for improving overall system efficiency and range for electric vehicles. By modulating the power split ratio between the mechanical (planetary gear meshes) and electrical (Motor Generator Units) driveline components, a continuous range of gear ratios operating at higher efficiency is obtained. The proposed concept leverages two power-split units that lead to significantly reduced power flow through the electrical drivelines (compared with single speed EV transmissions as well as single power-split E-CVTs) while providing the same overall ratio spread for transmission operation.
Technical Paper

A Highly Stable Two-Phase Thermal Management System for Aircraft

2012-10-22
2012-01-2186
Future electronics and photonics systems, weapons systems, and environmental control systems in aircraft will require advanced thermal management technology to control the temperature of critical components. Two-phase Thermal Management Systems (TMS) are attractive because they are compact, lightweight, and efficient. However, maintaining stable and reliable cooling in a two-phase flow system presents unique design challenges, particularly for systems with parallel evaporators during thermal transients. Furthermore, preventing ingress of liquid into a vapor compressor during variable-gravity operation is critical for long-term reliability and life. To enable stable and reliable cooling, a highly stable two-phase system is being developed that can effectively suppress flow instability in a system with parallel evaporators. Flow stability is achieved by ensuring that only single-phase liquid enters the evaporators.
Technical Paper

A Pin-on-Disc Study on the Electrified Sliding Wear of EVs Powertrain Gears

2022-03-29
2022-01-0320
In contrast to conventional powertrains from internal combustion engine vehicles (ICEV), the tribological performance of powertrains of electric vehicles (EVs) must be further evaluated by considering new critical operating conditions such as electrical environments. The operation of any type of electric motor produces shaft voltages and currents due to various hardware configurations and factors. Furthermore, the common application of inverters intensifies this problem. It has been reported that the induced shaft voltages and currents can cause premature failure problems in tribological components such as bearings and gears due to accelerated wear and/or fatigue. It is ascribed to effects of electric discharge machining (EDM), also named, sparking wear caused by shaft currents and poor or increasingly diminishing dielectric strength of lubricants. A great effort has been done to study this problem in bearings, but it has not yet been the case for gears.
Technical Paper

A Study of Design Issues on Electrically Peaking Hybrid Electric Vehicle for Diverse Urban Driving Patterns

1999-03-01
1999-01-1151
A vehicle's performance depends greatly on the operating conditions, such as journey type, driving behavior etc. Driving patterns vary with geographical location and traffic conditions. In today's global economy where automobile industries are concerned with both local and international markets, it becomes necessary to investigate vehicle performance for driving cycles of different countries and develop vehicle designs which are appropriate to the consumer's market. This paper concentrates on the issues related to designing hybrid electric vehicles. A method of optimizing the size of the principal hardware components of hybrid vehicles such as, electric motors, internal combustion engines, transmissions and energy storage devices based on the demands of different drive cycles is discussed in the paper.
Technical Paper

An Experimental Study of a General Aviation Single-Engine Aircraft Utilizing a Natural Laminar Flow Wing

1985-04-01
850861
Force and moment measurements, and surface flow patterns have been obtained for a one-fifth scale model of a single-engine general aviation aircraft utilizing a 15% thick natural laminar flow wing section. The data is for typical pre- and post-stall angles of attack, aircraft yaw attitudes, surface roughness and Reynolds number conditions. Results from a separate study of the wing alone are also given for comparison. This comparison shows that the fuselage/tail assembly acts as a lifting body. The aerodynamic characteristics show marked deterioration with increasing surface roughness. In addition, the studies indicate that the transition on the wing is characterized by laminar short bubble separation. The aerodynamic characteristics are somewhat unaffected by the presence of mini-tufts. The flow visualization photographs clearly show the transition and separation regions, and document the effects of variations in angle of attack and yaw on wing body interference.
Technical Paper

An Investigation of Electric Motor Drive Characteristics for EV and HEV Propulsion Systems

2000-08-21
2000-01-3062
The recent growing interest in electric vehicle (EV) and hybrid electric vehicle (HEV) demands for an efficient, reliable and economical motor drive for electric propulsion. However, searching for a suitable traction motor becomes quite involved when vehicle dynamics and system architecture are considered. This paper makes an in-depth investigation on two highly important traction motor characteristics, extended speed range-ability and energy efficiency, from vehicular system perspective. The influences of these two motor drive features on a pure EV, a post-transmission, and two pre-transmission parallel HEV with 20% and 50% hybridization are studied in this paper. Two EV-HEV software packages ‘V-ELPH’ developed by Texas A&M University and ‘ADVISOR’ from NREL are used for simulation purposes. Based on the results in this paper, a systematic method is developed regarding the selection of traction drives for EV and HEV propulsion systems.
Technical Paper

An Investigation of the Effects of the Propeller Slipstream on a Laminar Wing Boundary Layer

1985-04-01
850859
A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.
Technical Paper

Analysis of Electric Vehicle Utilization on Global CO2 Emission Levels

1999-03-01
1999-01-1146
The last quarter century has seen CO2 emissions increase at a steadily increasing rate. In the U.S.A. alone from 1970 to 1992 the CO2 emissions have increased from 5.5 billion metric tons of carbon dioxide to 6.6 bmt. The transportation industry contributes currently (1991 figures) 24.7% of the total emissions from the United States. Transportation utilization has grown faster, however, but more efficient vehicles allow for more travel without increasing the CO2 proportionally. The advancements made in the 1980s have reduced emissions by 21 million tons of CO2 per year on average. Electric Vehicles have been a proposed method of reducing the CO2 emissions due to transportation. Electric vehicles produce no emissions while driving, making them ideal candidates for heavily polluted and concentrated areas such as urban locations. However, it is debatable if electric vehicles are feasible on the global scale of CO2 reduction.
Journal Article

Composing Tradeoff Studies under Uncertainty based on Parameterized Efficient Sets and Stochastic Dominance Principles

2012-04-16
2012-01-0913
Tradeoff studies are a common part of engineering practice. Designers conduct tradeoff studies in order to improve their understanding of how various design considerations relate to one another and to make decisions. Generally a tradeoff study involves a systematic multi-criteria evaluation of various alternatives for a particular system or subsystem. After evaluating these alternatives, designers eliminate those that perform poorly under the given criteria and explore more carefully those that remain. One limitation of current practice is that designers cannot combine the results of preexisting tradeoff studies under uncertainty. For deterministic problems, designers can use the Pareto dominance criterion to eliminate inferior designs. Prior work also exists on composing tradeoff studies performed under certainty using an extension of this criterion, called parameterized Pareto dominance.
Journal Article

Design with Uncertain Technology Evolution

2012-04-16
2012-01-0912
A major decision to make in design projects is the selection of the best technology to provide some needed system functionality. In making this decision, the designer must consider the range of technologies available and the performance of each. During the useful life of the product, the technologies composing the product evolve as research and development efforts continue. The performance evolution rate of one technology may be such that even though it is not initially a preferably technology, it becomes a superior technology after a few years. Quantifying the evolution of these technologies complicates the technology selection decision. The selection of energy storage technology in the design of an electric car is one example of a difficult decision involving evolving technologies.
Technical Paper

Effect of Extended-Speed, Constant-Power Operation of Electric Drives on the Design and Performance of EV-HEV Propulsion System

2000-04-02
2000-01-1557
Vehicle dynamics requires extended-speed, constant-power operation from the propulsion system in order to meet the vehicle's operating constraints (e.g., initial acceleration and gradeability) with minimum power. Decrease in power rating will decrease the volume of the energy storage system. However, extending the constant power operating range of the electric drives increases its rated torque, thereby, increasing motor volume and weight. This paper investigates the effect of extended constant power operation on battery driven electric vehicle (BEV) propulsion system taking the change in motor weight and battery volume into account. Five BEV systems with five traction drive having different base speeds are simulated for this study. The performances of the BEVs are obtained using FUDS and HWYFET drive cycles. Two EV-HEV software packages ‘V-ELPH’ developed by Texas A&M University and ‘ADVISOR’ from NREL are used for simulation testing.
Technical Paper

Effect of Motor Short Circuit on EV and HEV Traction Systems

2000-08-21
2000-01-3063
Short circuit incidents on traction motors can cause ‘wheel-locking’ on the vehicle, and may have an adverse impact on vehicle stability. This paper investigates the necessity of fault-tolerant motors for EV and HEV traction applications. Reaction of resulting fault torques differ along with electric motor types and fault variety. The paper analyzes the short-circuit behavior of three basic motor types: permanent magnet, induction and switched reluctance motor. The analysis is based on the transient simulation of the three most common inverter short-circuit cases and their effect on vehicle stability.
Technical Paper

Electrical System Architectures for Future Aircraft

1999-08-02
1999-01-2645
This paper addresses the fundamental issues faced in the aircraft electrical system architectures. Furthermore, a brief description of the conventional and advanced aircraft power system architectures, their disadvantages, opportunities for improvement, future electric loads, role of power electronics, and present trends in aircraft power system research will be given. Finally, this paper concludes with a brief outline of the projected advancements in the future.
Technical Paper

Investigation of High-Energy and High-Power Hybrid Energy Storage Systems for Military Vehicle Application

2003-06-23
2003-01-2287
Military and civilian vehicles are moving towards more electrification, in response to the increasing demand for multi-mode missions, fuel consumption and emissions reduction, and dual use electrical and electronic components. Consequently, the vehicle electric load is increasing rapidly. For military vehicles, these electrical loads include: the loads for electric traction (EV and HEV), cabin climate conditioning, vehicle control and actuation, actuation by wire (X by wire), sensors, reconnaissance, communications, weapons etc. All these requirements need to be supported by an efficient, fast responding and high capacity energy storage system. The electric load of a vehicle can be decomposed into two components--- static and dynamic loads. The static component is slowly varying power with limited magnitude, whereas the dynamic load is fast varying power with large magnitude. The energy storage system, accordingly, comprises of two basic elements.
Technical Paper

Investigation of Proper Motor Drive Characteristics for Military Vehicle Propulsion

2003-06-23
2003-01-2296
Due to their harsh operating environments, military vehicle drive trains have special requirements. These special requirements are usually represented by hill climbing ability, obstacle negotiation, battlefield cross country travel, hard acceleration, high speed, etc. These special requirements need the vehicle drive train to have a wider torque and speed range characteristics than commercial vehicles. We have proved that larger constant power ratio in electric motor can significantly enhance the vehicle acceleration performance. In other words, for the same acceleration performance, large constant power ratio can minimize the power rating of the traction motor drive, thus minimizing the power rating of the power source (batteries for instance). Actually, extension of the constant power range can also significantly enhance the gradeability, which is crucial for military vehicles.
Technical Paper

Multi-Objective Design Optimization for an Integrated Tractor Trailer Vehicle

2011-04-12
2011-01-0066
The need of upfront modeling, simulation and design optimization has been ever increasing during full vehicle product development process. The overall vehicle system and component subsystem performances remain critical considerations for making final product release decision. With these challenges in mind, the work of this paper discusses the development of feasible CAE methods, tools, and processes for multi-objective design optimization. A full integrated tractor trailer truck vehicle is used as an example to demonstrate this capability. The proposed approach allows several design objectives to be simultaneously optimized, which might otherwise be extremely difficult to achieve with experimental methods.
Technical Paper

Nonlinear Control of a Ground Vehicle using Data-Driven Dynamic Models

2020-04-14
2020-01-0171
As autonomous vehicles continue to grow in popularity, it is imperative for engineers to gain greater understanding of vehicle modeling and controls under different situations. Most research has been conducted on on-road ground vehicles, yet off-road ground vehicles which also serve vital roles in society have not enjoyed the same attention. The dynamics for off-road vehicles are far more complex due to different terrain conditions and 3D motion. Thus, modeling for control applications is difficult. A potential solution may be the incorporation of empirical data for modeling purposes, which is inspired by recent machine learning advances, but requires less computation. This thesis proposal presents results for empirical modeling of an off-road ground vehicle, Polaris XP 900. As a first step, data was collected for 2D planar motion by obtaining several velocity step responses. Multivariable polynomial surface fits were performed for the step responses.
X