Refine Your Search

Topic

Search Results

Technical Paper

Alleviating Carbon Limitations in the Early Planetary Base Waste Stream

2006-07-17
2006-01-2257
This research is based on the hypothesis that recycling biofilm can provide the required carbon to increase biological denitrification of the carbon limited early planetary base wastewater. Recycling biofilm may offer significant advantages including a reduction in solid waste from biological wastewater processors, increased N2 return to cabin air, a reduction in TDS loading to the RO system, and increased alkalinity to drive further nitrification. The results of the study indicate that denitrification rate did increase due to the addition of lysed biofilm derived from the nitrification reactor. However, there was a simultaneous large release of additional ammonium. Further work will be required to understand the magnitude of the ammonium release and overall benefits of the process.
Technical Paper

An Optimum Biological Reactor Configuration for Water Recycling in Space

2009-07-12
2009-01-2564
Biological pre-treatment of early planetary/lunar base wastewater has been extensively studied because of its predicted ability to offer equivalent system mass (ESM) savings for long term space habitation. Numerous biological systems and reactor types have been developed and tested for treatment of the generally unique waste streams associated with space exploration. In general, all systems have been designed to reduce organic carbon (OC) and convert organic nitrogen (ON) to nitrate and/or nitrite (NOx -). Some systems have also included removal of the oxidized N in order to reduce overall oxygen consumption and produce additional N2 gas for cabin use. Removal of organic carbon will generally reduce biofouling as well as reduce energy and consumable cost for physiochemical processors.
Technical Paper

Biological Treatment of a Urine-Humidity Condensate Waste Stream

2004-07-19
2004-01-2462
Simulated wastewater, known as early surface mission wastewater, treated in previous experiments at JSC and TTU included urinal flush water, shower water, humidity condensate, oral hygiene water, and hand wash water. In reality, there is a difference between the early surface mission wastewater and the International Space Station wastewater. The ISS does not have a shower or hand wash, which contributes approximately 59 percent of the make-up water treated. The average influent ammonia concentration in the simulated wastewater treated by the TTU water reclamation system frequently exceeds 500 mg/L. Removal of the shower make-up water in simulated wastewater will result in a significant increase in the ammonia concentration, resulting in higher influent pH values and ammonia concentrations that may be inhibitory. Biological treatment technologies have suitably treated the diluted waste stream but a more concentrated waste stream may present a greater challenge.
Technical Paper

Biologically Treated Wastewater for NFT Plant Production in Space

2003-07-07
2003-01-2681
This research compared the nutrient content of the Biological Water Processor (BWP) effluent at JSC with acceptable nutrient ranges for general hydroponic NFT-solutions. Evaluated nutrient-components were NO3-N, P, K, Ca, Mg, Fe, Mn, Zn, B, Cu and Mo. Compared to Cooper's and Molyneaux's solution (Jones, 1997) BWP-nutrient concentrations were low for Ca, Mg, Fe and B. Compared to the NFT-solution used at KSC (Wheeler et al., 1997), the BWP-effluent showed higher contents of P, K, Zn, Cu and Mo and lower contents of N, Ca, Mg, Fe and B. This indicates that the BWP-effluent could support NFT-plant production.
Technical Paper

Determination of Magic Formula Tyre Model Parameters Using Homotopy Optimization Approach

2020-04-14
2020-01-0763
Tyre behavior plays an important role in vehicle dynamics simulation. The Magic Formula Tyre Model is a semi-empirical tyre model which describes tyre behavior quite accurately in the handling simulation. The Magic Formula Tyre Model needs a set of parameters to describe the tyre properties; the determination of these parameters is nontrivial task due to its nonlinear nature and the presence of a large number of coefficients. In this paper, the homotopy algorithm is applied to the parameter identification of Magic Formula tyre model. A morphing parameter is introduced to correct the optimization process; as a result, the solution is directed converging to the global optimal solution, avoiding the local convergence. The method uses different continuation methods to globally optimize the parameters, which ensures that the prediction of the Magic Formula model can be very close to the test data at all stages of the optimization process.
Technical Paper

Determination of the Fate and Behavior of a Commercial Surfactant in a Water Recycle System (WRS)

2003-07-07
2003-01-2558
Bioreactor studies and microcosm experiments were conducted to determine the degradation potential of a commercial cleansing formulation. With the possible replacement of the current cleansing formulation under consideration (Ecolab whole body shampoo containing Igepon TC-42™ as an active ingredient), determination of the degradation characteristics of the alternative formulation is necessary. The commercial formulation currently being evaluated is a modified version of Pert Plus® for Kids (PPK). The degradation potential of the PPK and main surfactant Sodium Laureth Sulfate (SLES) was determined in a packed bed denitrifying bioreactor. Results from the bioreactor studies led to the development of stoichiometric relationships to help predict and monitor SLES degradation. In addition to the degradation rates of Ecolab, the PPK formulation, as well as the four leading constituents contained in the PPK formulation was determined under denitrifying conditions in microcosm studies.
Technical Paper

Determining the Effect of Usage and Biota Upon Oxygen Flux Across Tubular Silicone Membranes

2007-07-09
2007-01-3092
Hollow fiber membranes aerate wastewater without bubble formation by separating the liquid and gases phases with a semi-permeable membrane. These membranes have shown to successfully create aerobic conditions within a biological reactor. This research investigated the effect of long term usage and biofilm growth on membrane's ability to transfer oxygen to solution. Results show that oxygen transfer across the membrane decreased significantly compared to unused membranes in areas of high biofilm growth while low biofilm growth showed only slight decreases.
Technical Paper

Education Outreach Associated with Technology Transfer in a Colonia of South Texas: Green Valley Farms Science and Space Club for Middle School Aged Children in Green Valley Farms, San Benito, Texas

2004-07-19
2004-01-2419
Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled “Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications.” Two households within the colonia were demonstration sites for the constructed wetlands.
Technical Paper

Effect of Different Seat Pan Angles and Feet-Floor Interactions on Human Body Response Using a Biodynamic Model

2019-04-02
2019-01-0169
In recent years, study on the ride comfort of vehicles has attracted wide attention. The vibration caused by the road is transmitted to the human body through the tire, suspension, vehicle body, and the seat. Since the human body is in contact with the seat and the vibration is transmitted directly to the human body through the seat, the seat pan angle plays an important role on the vibration response of the human body. Previous studies have explored the effects of different backrest designs on human vibration response, but ignored the effects of different seat pan angles. Therefore, this paper will use a human biodynamic model combined with a 6-DOF seat model to study the effect of seat pan angles and feet-floor interaction on human vibration response. Three cases are proposed: Case 1 has a seat pan angle 8°, Case 2 has a seat pan angle 13°, and Case 3 has a seat pan angle 17°.
Technical Paper

Effect of Recycle Ratio on the Performance of Biological Water Recovery System

2004-07-19
2004-01-2468
Biological pre-treatment of liquid waste could potentially offer equivalent mass savings for long term space habitation. Previous work has demonstrated the technological feasibility. However, limited work has been conducted on optimizing the biological reactors or fully characterizing the biochemical transformations occurring within the reactors. The objective of these studies was to provide long-term operating data on a proposed and well studied reactor configuration, and explore the effects of RR on system performance. The water recovery system has been in successful operation for over 2 years. Data to be presented will include both typical removal efficiencies for nitrogen species, DOC as well as important water quality parameters. In addition the effect of recycle ratio (2X, 5X, 10X, and 20X) will be quantified.
Technical Paper

Evaluation of Human Body Response for Different Vehicle Seats Using a Multibody Biodynamic Model

2013-04-08
2013-01-0994
A valid human biodynamic model is very useful for studying the human body's response to whole body vibration. Whole body vibration is one of the important factors in the study of vehicle ride comfort. The environmental vibrations are transferred to the human body through floor and seat. Seated posture is the most commonly used position in automobiles. Therefore, studying the human body response in a seated position has attracted a lot of attention. Because the human body is in direct contact with the seat, its design plays a very important role in vibration transmission. In seat design, two important components are seat suspension and cushion. The mechanical properties of these components are stiffness, damping and mass. These properties can be changed by adjusting cushion material and seat suspension linkages. In this paper, three types of seat models are used. The first one is a hard seat.
Technical Paper

Evaluation of a Microgravity Compatible Membrane Bioreactor for Simultaneous Nitrification/Denitrification

2007-07-09
2007-01-3094
The feasibility of a long-term space mission is partially reliant upon the ability to effectively recycle wastewater. Merged biological and physiochemical processes (integrated water recovery systems (IWRS)) are capable of producing potable water at lower equivalent system mass (ESM) than treatment systems composed of only physiochemical processes. Reducing the ESM of the water recycling units can increase the practicality of extended space missions by decreasing payload weight. In order to lower the ESM of the biological pre-treatment component, a single-stage biological reactor capable of simultaneous carbon and nitrogen removal was created by modifying the membrane-aerated biofilm reactor (MABR) design. Studies were performed in order to evaluate the water quality performance of this reactor.
Technical Paper

Experiences with a Space and Science Club in a Low-Income Community in South Texas

2005-07-11
2005-01-3101
NASA's mission statement includes the protection of the home planet and a goal to inspire the next generation of explorers. NASA's current vision also includes human exploration of the Moon and Mars. Typically, residents of low-income communities are not directly involved in the space exploration process. Parents of children in low-income communities are inclined to be more interested in the educational components of NASA's activities rather than the technological accomplishments. This paper describes the approach taken to start and support a space and science club in a colonia near the U.S. - Mexico border in South Texas. The club provided a new organizational structure for linking NASA's goals with a low-income community. The structure of the club evolved over the course of three years to reflect the interests and resources of the youth that lived in the colonia.
Technical Paper

Finite Element Analysis for the Interface of a Respirator and the Human Face -A Pilot Study

2009-06-09
2009-01-2271
Comfort assessment of respirator fit plays an important role in the respirator design process and standard development. To reduce the cost and design time of respirators, the design, fit, and evaluation process can be performed in a virtual environment. Literature shows that respirator-induced discomfort relates to stress, area, and region of the face covered. In this work, we investigate the relationship between the strap tensions and the stress and deformation distribution on the interface between the respirator and the headform. This is the first step towards a comprehensive understanding of the contribution of contact stress to the mathematical comfort fit model. The 3D digital models for respirators and headforms have been developed based on 3D scanning point-cloud using a Cyberware® 3D digitizer. Five digital headform models have been generated: small, medium, large, long and short.
Technical Paper

Formulation of Human Performance Measures for Full Body Pregnant Women Standing Posture Prediction

2011-04-12
2011-01-0062
Digital human modeling and posture prediction can only be used as a design tool if the predicted postures are realistic. To date, the most realistic postures have been realized by simultaneously optimizing human performance measures (HPMs). These HPMs currently consist of joint discomfort, delta potential energy, and visual displacement. However these HPMs only consider the kinematics of human posture. Dynamic aspects of human posture such as external loads and mass of limbs have not yet been considered in conjunction with the current HPMs. This paper gives the formulation for a new human performance measure combination including the use of joint torque to account for the dynamics of human posture. Postures are then predicted using multi-objective optimization (MOO) techniques to optimize the combination of the new HPM and the current. The predicted postures are then compared with the benchmark postures which are those obtained from using the current HPMs only.
Technical Paper

In-Plane Flexible Ring Tire Model Development for Ride Comfort & Braking/Driving Performance Analysis under Straight-line Driving Condition

2015-04-14
2015-01-0628
Vehicle tire performance is an important consideration for vehicle handling, stability, mobility, and ride comfort as well as durability. Significant efforts have been dedicated to tire modeling in the past, but there is still room to improve its accuracy. In this study, a detailed in-plane flexible ring tire model is proposed, where the tire belt is discretized, and each discrete belt segment is considered as a rigid body attached to a number of parallel tread blocks. The mass of each belt segment is accumulated at its geometric center. To test the proposed in-plane tire model, a full-vehicle model is integrated with the tire model for simulation under a special driving scenario: acceleration from rest for a few seconds, then deceleration for a few seconds on a flat-level road, and finally constant velocity on a rough road. The simulation results indicate that the tire model is able to generate tire/road contact patch forces that yield reasonable vehicle dynamic responses.
Technical Paper

In-Plane Parameter Relationship between the 2D and 3D Flexible Ring Tire Models

2017-03-28
2017-01-0414
In this paper, a detailed three dimensional (3D) flexible ring tire model is first proposed which includes a rigid rim with thickness, different layers of discretized belt points and a number of massless tread blocks attached on the belt. The parameters of the proposed 3D tire model can be divided into in-plane parameters and out-of-plane parameters. In this paper, the relationship of the in-plane parameters between the 3D tire model and the 2D tire model is determined according to the connections among the tire components. Based on the determined relationship, it is shown that the 3D tire model can produce almost the same prediction results as the 2D tire model for the in-plane tire behaviors.
Technical Paper

Incorporation of a Membrane-Aerated Bioreactor in a Water Recovery System

2004-07-19
2004-01-2461
The objective of this study was to investigate the potential of membrane-aerated bioreactors as long term microgravity compatible nitrifying biological water processors (BWP). A small-scale (1/20th) replica of the water recovery system (WRS) at JSC has been operated and extensively analyzed at Texas Tech University (TTU) for the last 3 years. The current nitrifying tubular reactor at JSC and TTU has experienced difficulty in maintaining efficiency and low maintenance. In an attempt to increase the efficiency of the biological portion of the WRS, a membrane-aerated bioreactor (MABR) was constructed and operated using the same parameters as the TTU-WRS in August 2003. The MABR is downstream of an anaerobic packed bed and is designed to promote nitrification (NH4 → NOx). The MABR achieved a percent nitrification of 61% and 55% for recycle ratios of 10 and 20, respectively.
Technical Paper

Modeling a Biological Closed Loop Water Recycling System for Prolonged Manned Space Flight

2004-07-19
2004-01-2511
For prolonged manned spaceflight, recycling of wastewater is critical to minimize payload costs. We have constructed a pilot-scale, closed-loop water recycling system (CLWRS). Due to slow process dynamics, evaluation of multiple experimental scenarios is very time-consuming. To accelerate evaluation, we have developed mathematical models of the individual reactors, as well as a process model of the pilot plant, which combines nitrification, denitrification, recycle, and degassing steps. The simulation accurately reproduces the 35% total nitrogen (TN) reduction observed experimentally at a 20/1 recycle ratio. Both experiments and simulations indicate that biological CLWRS have significant potential for long-duration manned space flight.
Technical Paper

Modeling and Control Studies of an Integrated Biological Wastewater Treatment System

2005-07-11
2005-01-2963
From 1997 to 2001, the third author worked with a team of engineers at JSC to develop the requirements and basic design for the Bioregenerative Planetary Life Support Systems Test Complex, or BIO-Plex. Under the Advanced Integration Matrix (AIM) Project, this earlier effort is extended to an investigation of methods and approaches for Advanced Systems Integration and Control. The intent is to understand and validate the use of software as an integrating function for complex heterogeneous systems, particularly for Advanced Life Support (ALS), in the context of support of mission operations. Preliminary investigations undertaken in the summer of 2004 indicate that integration of controls for the type of dynamic, non-linear, closed-loop biological systems under investigation for ALS systems require a different systems engineering approach than that required for traditional avionics systems.
X