Refine Your Search

Topic

Search Results

Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

2017-09-19
2017-01-2092
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Technical Paper

A Robust Method of Countersink Inspection Using Machine Vision

2004-09-21
2004-01-2820
An automated system drills the outer moldline holes on a military aircraft wing. Currently, the operator manually checks countersink diameter every ten holes as a process quality check. The manual method of countersink inspection (using a countersink gauge with a dial readout) is prone to errors both in measurement and transcription, and is time consuming since the operator must stop the automated equipment before measuring the hole. Machine vision provides a fast, non-contact method for measuring countersink diameter, however, data from machine vision systems is frequently corrupted by non-gaussian noise which causes traditional model fitting methods, such as least squares, to fail miserably. We present a solution for circle measurement using a statistically robust fitting technique that does an exceptional job of identifying the countersink even in the presence of large amounts of structured and non-structured noise such as tear-out, scratches, surface defects, salt-and-pepper, etc.
Technical Paper

Advanced Technology in Future Metal Cutting for Airframe Manufacturing

2002-04-16
2002-01-1515
Metal cutting is a substantial constituent of airframe manufacturing. During the past several decades, it has evolved significantly. However, most of the changes and improvement were initiated by the machine tool industry and cutting tool industry, thus these new technologies is generally applicable to all industries. Among them, few are developed especially for the airframe manufacture. Therefore, the potential of high efficiency could not be fully explored. In order to deal with severe competition, the aerospace industry needs improvement with a focus on achieving low cost through high efficiency. The direction of research and development in parts machining must comply with lean manufacturing principles and must enhance competitiveness. This article is being forwarded to discuss the trend of new developments in the metal cutting of airframe parts. Primary driving forces of this movement, such as managers, scientists, and engineers, have provided significant influence to this trend.
Journal Article

Application of Metrology, Statistics, Root Cause Analysis, and Cost of Quality to Enable Quality Improvements and Implementation of Statistical Process Controls for Acceptance of Large Complex Assemblies

2021-03-02
2021-01-0025
For new aircraft production, initial production typically reveals difficulty in achieving some assembly level tolerances which in turn lead to non-conformances at integration. With initial design, tooling, build plans, automation, and contracts with suppliers and partners being complete, the need arises to resolve these integration issues quickly and with minimum impact to production and cost targets. While root cause corrective action (RCCA) is a very well know process, this paper will examine some of the unique requirements and innovative solutions when addressing variation on large assemblies manufactured at various suppliers. Specifically, this paper will first review a completed airplane project (Project A) to improve fuselage circumferential and seat track joins and continue to the discussion on another application (Project B) on another aircraft type but having similar challenges.
Technical Paper

Assessment of the OVERFLOW Navier Stokes Code for Various Airplane Components

2001-09-11
2001-01-2976
The OVERFLOW chimera grid Navier Stokes code was used to analyze a wide variety of airplane configurations. The code performed reliably and was found to have comparable accuracy to the structured grid code TLNS3D. It is easier to develop overlapping grid blocks to represent a complex configuration than it is to develop grid blocks that must abut one another. The process is inherently modular. One can add or subtract components like tip-lights, compound winglets, struts, nacelles, tails and fairings at will. The gain in grid simplicity is offset by the complication in specifying block connectivity, however. The overset blocks are typically of better quality, but there is a drawback in that it is not always possible to guarantee flux conservation. The recent development of software for automatic connectivity holds promise for the routine use of OVERFLOW by design engineers.
Technical Paper

Autonomous Flight Control Development on the Active Aeroelastic Wing Aircraft

2004-11-02
2004-01-3116
A highly modified F/A-18 aircraft is being used to demonstrate that aeroelastic wing twist can be used to roll a high performance aircraft. A production F/A-18A/B/C/D aircraft uses a combination of aileron deflection, differential horizontal tail deflection and differential leading edge flap deflection to roll the aircraft at various Mach numbers and altitudes. The Active Aeroelastic Wing program is demonstrating that aeroelastic wing twist can be used in lieu of the horizontal tail to provide autonomous roll control at high dynamic pressures. Aerodynamic and loads data have been gathered from the Phase I AAW flight test program. Now control laws have been developed to exploit aeroelastic wing twist and provide autonomous flight control of the AAW aircraft during Phase II. Wing control surfaces are being deflected in non-standard ways to create aeroelastic wing twist and develop the required rolling moments without use of the horizontal tail.
Technical Paper

CFD Modeling of 2-D Aileron Effectiveness

1999-10-19
1999-01-5618
This paper examines the capability of the Reynolds-averaged thin-layer Navier-Stokes codes to simulate the results from a two-dimensional aileron effectiveness test. This unique test was carried out in the IAR high Reynolds number wind tunnel and addressed the effects of Reynolds number, Mach number and angle-of-attack on aileron effectiveness. The test results showed a highly nonlinear variation of lift for downward trailing edge deflections. It provides a valuable database for using CFD to determine the adequacy of the corrections applied to the experimental data due to the presence of the wind tunnel walls, and for assessing the current CFD capability to model the flowfield with separation. CFD predictions are obtained by using CFL3D with the Spalart-Allmaras turbulence model and TLNS2D with the modified Johnson-King turbulence model.
Technical Paper

Calculations of Ice Shapes on Oscillating Airfoils

2011-06-13
2011-38-0015
The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
Technical Paper

Comparison of Alerted and Visually Acquired Airborne Aircraft in a Complex Air Traffic Environment

1998-04-06
981205
This study was designed to answer what percent of “required” traffic pilots acquire visually using the current “visual acquisition system” of windows, eyes and the Traffic Collision Avoidance System (TCAS). “Required Traffic” was defined as Air Traffic Control (ATC) calls to the research aircraft, TCAS Traffic Alerts and/or TCAS Resolution Advisories. The results of the approximately 40 hours of flight were that the majority of (“required”) traffic was NOT visually acquired (39% visually acquired; 61% not visually acquired). When traffic was identified to the pilots by more than one source, the visual acquisition rate was 58%. For validation purposes, an additional 10 hours of flight observations were made during revenue flights with a major airline. Flight test and airline observations were found to be comparable.
Technical Paper

Designing Airplane Cabin Noise Treatment Packages using Statistical Energy Analysis

2007-05-15
2007-01-2316
Statistical Energy Analysis (SEA) is a very powerful tool in its ability to guide noise control package design in automobile, airplane and architectural systems. However transmission loss modeling in an SEA frame work has more to do with modeling of sound propagation through foam and fiber noise control materials than classical SEA power flow between groups of resonant modes. The transmission loss problem is reviewed in an SEA frame work with a focus on key paths and input parameter variations on predicted noise control package performance.
Technical Paper

Development of High-Strength, Aluminum-Alloy Nanocomposite Material for Advanced Aerospace Fastener Technology

2004-09-21
2004-01-2824
Every aircraft produced today contains hundreds of thousands of fastened joints. These joints and the fasteners that connect them are perhaps the most common source of failure in aircraft structure. Therefore, it is imperative that advancements in fastener materials and designs be given the utmost consideration and attention to achieve increased joint performance and integrity. This paper presents the results of development efforts relating to an advanced processing technique and its effect upon selected mechanical properties of certain metallic alloy materials that are deemed appropriate or important for potential fastener applications.
Technical Paper

Development of Non-Metallic Fastener Designs for Advanced Technology Structural Applications

2004-09-21
2004-01-2821
Fastening metallic structure for aerospace applications is relatively straightforward and has been done for some time. Dealing with advanced composites, though, requires a significantly different technological approach, especially primary structure. Although composite material utilization has increased enormously in civil and military aircraft in recent years, the application of composite materials to primary aircraft structure has not kept pace and is still greeted with some skepticism in the aerospace community. In particular, no major transport manufacturer has yet employed composite components for fuselage or wing primary structure. This appears to be changing rather rapidly with the introduction and the evolution of new airframes such as the 7E7 and Blended Wing Body (BWB) concepts.
Technical Paper

Dual Electric Spindle Retrofit for Wing Riveters

2006-09-12
2006-01-3176
The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
Technical Paper

Electromagnetic Forming of Various Aircraft Components

2005-10-03
2005-01-3307
Electromagnetic forming (EMF) technology has been used lately for the joining and assembly of axisymmetric parts in the aerospace and automotive industries. A few case studies of compressive-type joining processes applied on both aluminum and titanium or stainless tubes for aerospace applications are presented. In the first case study, tests were conducted using 2024-T3 drawn tubes joined with a steel end fitting to form a torque tube using different forming variables including: the fitting geometry, material formability and forming power (KJ). The power setting and the fitting geometry were optimized to improve the fatigue life, torque off, and the axial load capability of the torque tube joints to drive the leading and trailing edge high-lift devices.
Technical Paper

Fasteners Modeling for MSC.Nastran Finite Element Analysis

2000-10-10
2000-01-5585
The distribution of loads between the components of a structural assembly depends not only on their dimensions and material properties but also on the stiffness of fasteners connecting the components. So, the accuracy of the finite element analysis is influenced much by the fastener representation in the model. This paper describes an approach designed specifically for joints with connected plates modeled by shell elements located at plates mid planes. The procedure is based on definition of independent components of a fastener joint flexibility, analysis of each component, and their assembly to represent a complete plate-fastener system of the joint. The proposed modeling technique differs from the traditional approach where all the connected plates are modeled coplanar. The traditional approach is based on calculating a single spring rate for a particular combination of fastener and plate properties.
Technical Paper

Flexible Assembly System Implementation

1999-10-06
1999-01-3447
This paper covers issues related to the installation, testing, and production implementation of a large-scale automated wing drilling/fastener installation system. Emphasis is placed on describing the production process, foundation requirements, axes alignment, calibration, testing and implementation. Description will include key hardware features such as the multi-function end effector and spindle end effector. The objective is to convey the complexity of implementing this system as well as reviewing the lessons learned from this experience.
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

2008-09-16
2008-01-2313
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Technical Paper

Mission-Adaptive Wing Flight Demonstration Program

1981-10-01
811035
The AFTI/F-111 program is a full-scale-development flight test and evaluation of the mission-adaptive wing concept. This concept features variable-camber leading and trailing edge flaps that are automatically positioned to alter the wing airfoil geometry and provide best performance throughout the flight envelope. The flaps use flexible skins that are curved and positioned by internal mechanisms so that smooth airfoil contours are maintained for peak aerodynamic efficiency.
Journal Article

Protection of the C-17 Airplane during Semi Prepared Runway Operations

2009-11-10
2009-01-3203
The C-17 airplane operates in some of the most challenging environments in the world including semi prepared runway operations (SPRO). Typical semi-prepared runways are composed of a compacted soil aggregate of sand, silt, gravel, and rocks. When the airplane lands or takes off from a semi-prepared runway, debris, including sand, gravel, rocks and, mud is kicked up from the nose landing gear (NLG) and the main landing gear (MLG) tires. As the airplane accelerates to takeoff or decelerates from landing touchdown, this airborne debris impacts the underbelly and any component mounted on the underbelly. The result is the erosion of the protective surface coating and damage to systems that protrude below the fuselage into the debris path. The financial burden caused by SPRO damage is significant due to maintenance costs, spares costs and Non-Mission Capable (NMC) time.
Technical Paper

Radial and Tangential Forces, Tool Motion, and the Formation of Lobed Holes in Drilling

2002-09-30
2002-01-2637
Out-of-round holes are formed as a result of tool motion during drilling. Tool vibration is driven by radial and tangential forces on the primary and secondary cutting edges. These forces in turn depend on the chip loads on each cutting edge, which in turn depend on the position of the tool at the current time and at the time of the previous tooth passage. A preliminary analysis based on balancing the cutting forces and the bending forces on the tool, shows that the characteristic frequencies of motion of the tool in the tool frame are near 3/rev, 5/rev, 7/rev etc. (corresponding to 2/rev, 4/rev, 6/rev) in the workpiece frame. These motions are consistent with the tool motion and hole form errors commonly observed on the shop floor. We will describe procedures for measuring the dependence of cutting forces on chip load, the development of simple equations for lateral motion of the tool, and solutions for the tool's behavior.
X