Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Experimental Evaluation to Determine the Effect of an Organometallic Fuel Additive on Particulate Trap Regeneration

1990-04-01
900920
The regenerative characteristics of a diesel particulate filter have been experimentally examined. The effect of particulate accumulation on system backpressure was of primary interest. To improve particulate regeneration, a copper compound was added to the fuel. The test results demonstrate that copper-containing fuel additives improve the regeneration characteristics of the filter, maintaining system backpressure at an acceptable level. Improved regeneration performance is expected to extend the operating range and life of the filter system. A model describing regeneration characteristics was developed to indicate the benefits of fuel copper concentration in controlling system backpressure.
Journal Article

Controlling Lubricant Derived Phosphorous Deactivation of the Three Way Catalysts Part 1: Assessments of Various Testing Methodologies

2010-05-05
2010-01-1544
Prior work by various OEMs has identified the ability of phosphorus-containing compounds to interfere with the efficiency of modern emissions control systems utilized by gasoline-powered vehicles. Considering the growing societal concerns about ecological effects of exhaust emissions, greenhouse gas emissions and related global climatic changes, it becomes desirable to examine the effect of reduced phosphorous (P) deposits in various vehicle makes, models and types of service, over the lifetime of a vehicle's operation. This paper assesses advantages and disadvantages of various methods to examine the path of P transfer throughout exhaust catalytic systems. Test types discussed include examples of bench testing focusing on catalyst compatibility, dyno mileage accumulation and field trial examinations.
Technical Paper

Copper Fuel Additives as a Part of a Particulate Emmission Control Strategy

1990-09-01
901619
The use of a copper diesel fuel additive in an emission control system improves particulate oxidation. This expands the operability of available systems by reducing the particulate mass loading and related external energy consumption required during regeneration. Easier, more frequent regenerations improve overall engine/system efficiency and reduce thermal stress on filtration media. Procedures for optimizing additive use are presented. In addition, the results from a health study are reviewed.
X