Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A CAE Optimization Process for Vehicle High Frequency NVH Applications

2005-05-16
2005-01-2422
A CAE SEA-based optimization process for the enhancement of vehicle high frequency NVH applications is developed and validated. The CAE simulation, based on statistical energy analysis (SEA) theory [1], has been used to analyze high frequency NVH responses for the vehicle sound package development. However, engineers have always faced two challenges during the vehicle SEA model development. One is to create a reliable SEA model, which is correlated well with hardware test data. The other is to have a systematic approach by using the correlated model to design effective and cost efficient sound package to improve vehicle interior quietness. The optimization process presented in this paper, which integrates analysis, design sensitivity, and optimization solver, has been developed to address the challenges and to serve the needs. A non-correlated Sport Utility Vehicle (SUV) and a correlated midsize car models were used to demonstrate the capability of the proposed optimization process.
Technical Paper

A Case Study in Hardware-In-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle

2004-03-08
2004-01-0303
Ford Motor Company has recently implemented a Hardware-In-the-Loop (HIL) testing system for a new, highly complex, hybrid electric vehicle (HEV) Electronic Control Unit (ECU). The implementation of this HIL system has been quick and effective, since it is based on proven Commercial-Off-The-Shelf (COTS) automation tools for real-time that allow for a very flexible and intuitive design process. An overview of the HIL system implementation process and the derived development benefits will be shown in this paper. The initial concept for the use of this HIL system was a complete closed-loop vehicle simulation environment for Vehicle System Controller testing, but the paper will show that this concept has evolved to allow for the use of the HIL system for many facets of the design process.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

A Development Procedure to Improve the Acoustical Performance of a Dash System

2005-05-16
2005-01-2515
This paper discusses a development procedure that was used to evaluate the acoustical performance of one type of dashpanel construction over another type for a given application. Two very different constructions of dashpanels, one made out of plain steel and one made out of laminated steel, were studied under a series of different test conditions to understand which one performs better, and then to evaluate how to improve the overall performance of the inferior dashpanel for a given application. The poorly performing dashpanel was extensively tested with dashmat and different passthroughs to understand the acoustic strength of different passthroughs, to understand how passthroughs affect the overall performance of the dash system, and subsequently to understand how the performance can be improved by improving one of the passthroughs.
Technical Paper

A Drum Brake Squeal Analysis in the Time Domain

2005-05-16
2005-01-2312
Brake squeal has been a chronic customer complaint, often appearing high on the list of items that reduce customers' satisfaction with their vehicles. Brake squeal can emanate from either a drum brake or a disc brake even though the geometry of the two systems is significantly different. A drum brake generates friction within a cylindrical drum interacting with two semi-circular linings. A disc brake consists of a flat disc and two flat pads. The observed squeal behavior in a vehicle differs somewhat between drum and disc brakes. A drum brake may have a loud noise coming from three or more squeal frequencies, whereas a disc brake typically has one or two major squeal frequencies making up the noise. A good understanding of the operational deflection shapes of the brake components during noise events will definitely aid in design to reduce squeal occurrences and improve product quality.
Technical Paper

A Framework for Reliable and Durable Product Design

1996-08-01
961794
In this paper, a simplified and systematic approach to integrate reliability and durability aspects in design process is presented. A six step process is explained with the help of examples. Two alternatives for gathering means and standard deviations for key parameters are discussed. First a DOE approach based on orthogonal arrays is presented. Second approach is based on Taylor Series expansion. An example of beam design is solved with both of these approaches. The Second example also considers the degradation with time in service.
Technical Paper

A Hybrid Full Vehicle Model for Structure Borne Road Noise Prediction

2005-05-16
2005-01-2467
As vehicle development timelines continue to shorten, it is necessary for the full vehicle NVH engineer to be able to predict performance without actual prototypes. There has been significant advancement in the accuracy of finite element modeling techniques of trimmed bodies; however accuracy is still low in the road noise mid frequency range from 150-400Hz. Also, calculation times for these frequencies are long, with very large results files in some cases. To alleviate these limitations, a Hybrid approach has been used, where a finite element suspension and drive train model is coupled with a test based Frequency Response Function (FRF) model of the trimmed body. The predicted road noise level was compared to actual vehicle tests and exhibited excellent correlation.
Technical Paper

A Method for Rapid Durability Test Development

2017-03-28
2017-01-0199
Designing a durability test for an automatic transmission that appropriately reflects customer usage during the lifetime of the vehicle is a formidable task; while the transmission and its components must survive severe usage, overdesigning components leads to unnecessary weight, increased fuel consumption and increased emissions. Damage to transmission components is a function of many parameters including customer driving habits and vehicle and transmission characteristics such as weight, powertrain calibration, and gear ratios. Additionally, in some cases durability tests are required to verify only a subset of the total parameter space, for example, verifying only component modifications. Lastly, the ideal durability test is designed to impose the worst case loading conditions for the maximum number of internal components, be as short as practicable to reduce testing time, with minimal variability between tests in order to optimize test equipment and personnel resources.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Technical Paper

A Multi-Objective Optimization and Robustness Assessment Framework for Passenger Airbag Shape Design

2007-04-16
2007-01-1505
A passenger airbag is an important part of a vehicle restraint system which provides supplemental protection to an occupant in a crash event. New Federal Motor Vehicle Safety Standards No. 208 requires considering multiple crash scenarios at different speeds with various sizes of occupants both belted and unbelted. The increased complexity of the new requirements makes the selection of an optimal airbag shape a new challenge. The aim of this research is to present an automated optimization framework to facilitate the airbag shape design process by integrating advanced tools and technologies, including system integration, numerical optimization, robust assessment, and occupant simulation. A real-world frontal impact application is used to demonstrate the methodology.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

A New Experimental Methodology to Estimate Tire/Wheel Blocked Force for Road NVH Application

2005-05-16
2005-01-2260
Past studies have shown that NVH CAE tire model quality is not adequate to correctly capture a mid-frequency range (100-300 Hz). A new methodology has been developed to estimate tire forces that are independent of dynamic characteristics of vehicle suspension and rig test fixture. The forces are called tire blocked forces and defined as a force generated by a tire/wheel system whose boundary condition is constrained. The tire blocked force is estimated by removing the dynamic effect of the tire force measurement fixture. The blocked forces can be applied to CAE models to predict vehicle road NVH responses. This new method can also be used as a target setting tool. Tire suppliers can check the blocked tire forces from the rig testing data against a force target before they submit tires to automotive manufacturers for evaluations on a prototype vehicle.
Technical Paper

A New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry

2005-04-11
2005-01-0640
As more virtual product development is integrated into the mass-production development process and overall development times are shortened, efficient intake-port design requires closer cooperation between design, simulation and test engineers. Doppler Global Velocimetry (DGV) has become an important link in the overall intake-port development process as it provides 3D-vector fields of flow velocity. Hence, it can be used to make direct comparisons with 3D-CFD-simulation results. The present paper describes the hardware-assisted inlet port development process for diesel engines, the cooperation among port design, 3D-CFD-simulation with the creation of alternative geometries and DGV flow-measurement of preferred variants with their capability of checking and improving simulation results.
Technical Paper

A New Wavelet Technique for Transient Sound Visualization and Application to Automotive Door Closing Events

1999-05-17
1999-01-1682
Transient automotive sounds often possess a complex internal structure resulting from one or more impacts combined with mechanical and acoustic cavity resonances. This structure can be revealed by a new technique for obtaining translation-invariant scalograms from orthogonal discrete wavelet transforms. These scalograms are particularly well suited to the visualization of complex sound transients which span a wide dynamic range in time (ms to s) and frequency (∼100Hz to ∼10kHz). As examples, scalograms and spectrograms of door latch closing events from a variety of automotive platforms are discussed and compared in light of the subjective rankings of the sounds.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

A Survey of Sound and Vibration Interaction

2005-05-16
2005-01-2472
When driving or riding in a vehicle, the customer is bombarded with sensory stimuli. These include tactile, auditory, olfactory and visual. In addition, the customer may be asked to perform various routine driving tasks that can have an influence on the perception of each of the aforementioned senses. Or perhaps, the influence of one sense may affect the perception of another. Since sound rarely occurs void of felt vibration and vice-versa, there is reason to believe one may influence the perception of the other, or that the two may interact in some way when the customer is exposed to a particular NVH (Noise Vibration and Harshness) event in a vehicle. The NVH engineer wishes to gage a sound or vibration's impact on the customer and make a determination as to whether corrective actions on the vehicle are necessary. NVH issues routinely show up as top warranty and customer satisfaction concerns.
Technical Paper

A Systematic Approach to Preparing Drive Files for Squeak and Rattle Evaluations of Subsystems or Components

2007-05-15
2007-01-2269
Many decisions need to be made when test track data is used to set up Squeak & Rattle evaluations of subsystems or components. These decisions are judgment-based so different people with different backgrounds and experience levels will make different decisions - few of which can be called right or wrong - but they are different which causes problems. Squeak & Rattle evaluation has become more scientific in recent years as subjective evaluation has been replaced by quantitative methods like N10 Loudness and shakers have become quiet. It is the authors' contention that the variations caused by different judgment calls can no longer be tolerated. Therefore a methodical process was developed which assures that different people will get the same results from the same set of test track data.
Technical Paper

A Systems Approach to Eliminating Squeal in a Drum Brake

2008-10-12
2008-01-2531
The traditional analysis of squeal noise for drum brakes is done in a separate approach, with CAE and laboratory/experimental techniques done independently or in a non-iterative sequential manner. In this paper, an innovative approach of directing the frequency response testing based on CAE is used and the overall process is embedded in a system approach. The drum brake design was changed to accomplish higher loads in a car. The initial results of the tests came out noise during the vehicle test. After retrieving the noisy parts from the vehicle, it was tested for frequency response, but in a directional manner suggested by the CAE model. This new approach hasn't been done before in industry practice. The CAE identified that two modes (around the noise frequency) swapped their orders compared to the old design and suggested design changes. The new design was evaluated with a mocked up prototype. This was followed by getting cast parts and testing them for frequency response.
X