Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Assessment of the Influence of GDI Injection System Parameters on Soot Emission and Combustion Stability through a Numerical and Experimental Approach

2015-09-06
2015-24-2422
The next steps of the current European and US legislation, EURO 6c and LEV III, and the incoming new test cycles will impose more severe restrictions on pollutant emissions for Gasoline Direct Injection (GDI) engines. In particular, soot emission limits will represent a challenge for the development of this kind of engine concept, if injection and after-treatment systems costs are to be minimized at the same time. The paper illustrates the results obtained by means of a numerical and experimental approach, in terms of soot emissions and combustion stability assessment and control, especially during catalyst-heating conditions, where the main soot quantity in the test cycle is produced. A number of injector configurations has been designed by means of a CAD geometrical analysis, considering the main effects of the spray target on wall impingement.
Technical Paper

Numerical Study on Multiple Injection Strategies in DISI Engines for Particulate Emission Control

2012-04-16
2012-01-0400
In this work a numerical analysis of multiple-injection strategy in homogeneous operation in DISI engines is presented. Moving toward Euro 6 emission standards, one of the main challenges for GDI engines is the reduction of particulate emission in terms of mass and particle number. In fact, in stratified operation, the droplets injected during compression stroke may cause a significant amount of soot production, due to locally non-premixed combustion. Besides, in medium and high load, the liner and piston spray impingement is another possible reason of production of soot emission. In order to meet the required performance and emission targets, focusing on the reduction of particulate emission, a multiple injection strategy can be considered as an option to control both the mixture stratification and the wall impingement. In particular, in this work a multiple injection strategy during intake stroke in homogeneous condition is analyzed.
Technical Paper

Virtual GDI Engine as a Tool for Model-Based Calibration

2012-09-10
2012-01-1679
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
X