Refine Your Search

Topic

Author

Search Results

Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Technical Paper

A Numerical and Experimental Study Towards Possible Improvements of Common Rail Injectors

2002-03-04
2002-01-0500
The aim of this work is to propose modifications to the managing of the 1st generation Common Rail injectors in order to reduce actuation time towards multiple injection strategies. The current Common Rail injector driven by 1st ECU generation is capable of operating under stable conditions with a minimum dwell between two consecutive injections of 1.8 ms. This limits the possibility in using proper and efficient injection strategies for emission control purposes. A previous numerical study, performed by the electro-fluid-mechanical model built up by Matlab-Simulink environment, highlighted different area where injector may be improved with particular emphasis on electronic driving circuit and components design. Experiments carried out at injector Bosch test-bench showed that a proper control of the solenoid valve allowed reducing drastically the standard deviation during the pilot pulses.
Technical Paper

Application of Enhanced Least Square to Component Synthesis Using FRF for Analyzing Dynamic Interaction of Coupled Body-Subframe System

1999-05-17
1999-01-1826
The component response synthesis approach utilizing frequency response function (FRF) has been used to analyze the dynamic interaction of two or more vehicle components coupled at discrete interface points. This method is somewhat suitable for computing higher frequency response because experimental component FRFs can be incorporated into the formulation directly. However its calculations are quite sensitive to measurement errors in the FRFs due to the several matrix inversion steps involved. In the past, researchers have essentially used a combined direct inverse and truncated singular valued decomposition (TSVD) technique to ensure a stable calculation, which is typically applied semi-empirically due to the lack of understanding of the influence of measurement error.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Journal Article

Battery Selection and Optimal Energy Management for a Range-Extended Electric Delivery Truck

2022-09-16
2022-24-0009
Delivery trucks and vans represent a growing transportation segment which reflects the shift of consumers towards on-line shopping and on-demand delivery. Therefore, electrification of this class of vehicles is going to play a major role in the decarbonization of the transportation sector and in the transition to a sustainable mobility system. Hybrid electric vehicles can represent a medium-term solution and have gained an increasing share of the market in recent years. These vehicles include two power sources, typically an internal combustion engine and a battery, which gives more degrees of freedom when controlling the powertrain to satisfy the power request at the wheels. Components sizing and powertrain energy management are strongly coupled and can make a substantial impact on the final energy consumption of a hybrid vehicle.
Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Technical Paper

Combined Optimization of Energy and Battery Thermal Management Control for a Plug-in HEV

2019-10-07
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the optimal control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section, the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Technical Paper

Conceptual Design and Analytic Assessment of 48V Electric Hybrid Powertrain Architectures for Passenger Cars

2019-04-02
2019-01-0353
To meet the requirements in relation to pollutants, CO2-emissions, performances, comfort and costs for 2025 timeframe, many technology options for the powertrain, that plays a key role in the vehicle, are possible. Beside the central aspect of reducing standard cycle consumption levels and emissions, consumer demands are also growing with respect to comfort and functionality. In addition, there is also the challenge of finding cost efficient ways of integrating technologies into a broad range of vehicles with different levels of hybridization. High degrees of electrification simultaneously provide opportunities to reduce the technology content of the internal combustion engines (ICE), resulting in a cost balancing compromise between combustion engine and hybrid technology. The design and optimization of powertrain topologies, functionalities, and components require a complex development process.
Technical Paper

Control Oriented Model of Cabin-HVAC System in a Long-Haul Trucks for Energy Management Applications

2022-03-29
2022-01-0179
Super Truck II is a 48V mild hybrid class 8 truck with an all auxiliary loads powered purely by the battery pack. Electric Heating Ventilation and Air Conditioning (HVAC) load is the most prominent battery load during the hotel period, when the truck driver is resting inside the sleeper. For the PACCAR Super Truck II (ST-II) project a 48 V battery system provides the required power during the hotel period. A cabin-HVAC model estimates the electric load on the 48V battery system, allowing the control system to implement an efficient energy management strategy that avoids engine idling during the hotel period. The thermal model accounts for the sun load due to the time of day and the geographic location of the truck during the hotel period. The cabin-HVAC model has two parts. First, a grey box model with two heat exchangers (Condenser and Evaporator) working in unison with refrigerant mass flow rate as an input and HVAC load as an output.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Development of Adaptive-ECMS and predictive functions for Plug-in HEVs to Handle Zero-Emission Zones Using Navigation Data

2021-09-05
2021-24-0105
The paper deals with the reduction of pollutant emissions in urban areas by considering a Zero-Emission Zone (ZEZ) in which hybrid electric vehicles (HEVs) are allowed to be driven without using the internal combustion engine, as several cities have planned to realize in the next decades. Moreover, since vehicle connectivity has spread more and more in the last years, a vehicle-to-network (V2N) communication system has been taken into account to retrieve real-time navigation data from a map service provider and thus reconstructing the so-called electronic horizon, which is a reconstruction of the future conditions of the vehicle on the road ahead. The speed profile and the road slope are used as input for an on-board predictive control strategy of a plug-in HEV (PHEV). In particular, a dedicated algorithm predicts the amount of necessary energy to complete the city event in full-electric mode, giving a state of charge (SoC) target value.
Journal Article

Effect of Local Stiffness Coupling on the Modes of a Subframe-Bushing System

2013-05-13
2013-01-1904
The elastomeric joints (bushings or mounts) in vehicle structural frames are usually described as uncoupled springs (only with diagonal terms) in large scale system models. The off-diagonal terms of an elastomeric joint have been previously ignored as they are often unknown since their properties cannot be measured in a uniaxial elastomer test system. This paper overcomes this deficiency via a scientific study of a laboratory frame that is designed to maintain a high fidelity with real-world vehicle body subframes in terms of natural modes under free boundaries. The steel beam construction of the laboratory frame, with four elastomeric mounts at the corners, permits the development of a highly accurate, yet simple, beam finite element model. This allows for a correlation study between the experiment and model that helps shed light upon the underlying physical phenomenon.
Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Technical Paper

Evaluation of a Shock Model for Vehicle Simulation

2007-04-16
2007-01-0845
This paper describes the development of a more accurate shock absorber model in order to obtain better vehicle simulation results. Previous shock models used a single spline to represent shock force versus shock velocity curves. These models produced errors in vehicle simulations because the damper characteristics are better represented by the application of a hysteresis loop in the model. Thus, a new damper model that includes a hysteresis loop is developed using Matlab Simulink. The damper characteristics for the new model were extracted from measurements made on a shock dynamometer. The new model better represents experimental shock data. The new shock model is incorporated into two different lumped-parameter vehicle models: one is a three degree-of-freedom vehicle handling model and the other is a seven degree-of-freedom vehicle ride model. The new damper model is compared with the previous model for different shock mileages (different degrees of wear).
Technical Paper

Examination of Some Vibration Isolator Models and Their Effects on Vibration and Structure-borne Noise Transmission

2003-05-05
2003-01-1477
A vibration isolator or mount is often modeled by the Voigt model describing uni-axial (longitudinal) motion with frequency-invariant parameters. However, wave effects due to the mass distribution within the isolator are observed as the frequency is increased. Further, flexural stiffness components play an important role, leading to off-axis and coupling effects. Thus, the simplified mount models could lead to erroneous predictions of the dynamic behavior of an overall system such as automotive powertrain or chassis mounting systems. This article compares various approximate isolator models using a multi-dimensional mobility model that is based on the continuous system theory. Harmonic force and moment excitations are separately applied to a rigid body source to investigate the multi-dimensional vibratory behavior. Analysis is however limited to a linear time-invariant system and the mobility synthesis method is utilized to predict the frequency domain behavior.
Technical Paper

High-Fidelity Modeling and Prediction of Hood Buffeting of Trailing Automobiles

2020-03-10
2020-01-5038
The importance of fluid-structure interaction (FSI) is of increasing concern in automotive design criteria as automobile hoods become lighter and thinner. This work focuses on computational simulation and analysis of automobile hoods under unsteady aerodynamic loads encountered at typical highway conditions while trailing another vehicle. These driving conditions can cause significant hood vibrations due to the unsteady loads caused by the vortex shedding from the leading vehicle. The study is carried out using coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) codes. The main goal of this work is to characterize the importance of fluid modeling fidelity to hood buffeting response by comparing fluid and structural responses using both Reynolds-Averaged Navier-Stokes (RANS) and detached eddy simulation (DES) approaches. Results are presented for a sedan trailing another sedan.
Technical Paper

Implementation of an Electric All-Wheel Drive (eAWD) System

2008-01-14
2008-01-0599
This paper presents the implementation and performance of an electric all-wheel drive system on a series-parallel, through-the-road hybrid electric vehicle. Conventional methods of all-wheel drive do not provide a suitable solution for this type of vehicle as the powertrain lacks a mechanical link between the front and rear axles. Moreover, this unique architecture allows the vehicle to be propelled solely by the front, or the rear, wheels during typical operation. Thus, the algorithm presented here manages wheel slip by either the front, or rear wheels when engaging to provide all-wheel drive capability. necessary testing validates the robustness of this Extensive system.
Technical Paper

In-Depth Analysis of the Influence of High Torque Brakes on the Jackknife Stability of Heavy Trucks

2003-11-10
2003-01-3398
Published NHTSA rulemaking plans propose significant reduction in the maximum stopping distance for loaded Class-VIII commercial vehicles. To attain that goal, higher torque brakes, such as air disc brakes, will appear on prime movers long before the trailer market sees significant penetration. Electronic control of the brakes on prime movers should also be expected due to their ability to significantly shorten stopping distances. The influence upon jackknife stability of having higher performance brakes on the prime mover, while keeping traditional pneumatically controlled s-cam drum brakes on the trailer, is discussed in this paper. A hybrid vehicle dynamics model was applied to investigate the jackknife stability of tractor-semitrailer rigs under several combinations of load, speed, surface coefficient, and ABS functionality.
X