Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Comparison of Some Biodegradable Hydraulic Fluids and Engine Oils

Environmentally friendly fuels and lubricants research on hydraulic fluids, engine oils, greases and industrial applications is of interest to government agencies and manufacturers of equipment, engines and vehicles. The key to increasing the use of renewable natural resources is developing fluids of equivalent performance to petroleum base products, at an acceptable product cost. The well known drawbacks of vegetable oils are oxidation stability and low temperature properties. This study compares commercial fluids and laboratory formulations as to their rheological properties and uses different approaches to solve both the low temperature and the oxidative stability problems. Frictions and wear characteristics of the fluids are evaluated and several fluids are compared laboratory bench tests.
Technical Paper

The Role of Nitrogen in the Observed Direct Microbial Mutagenic Activity for Diesel Engine Combustion in a Single–Cylinder DI Engine

This study shows conclusively that some of the direct microbial mutagenic activity of the soluble-organie-fraction from Diesel particulate matter can be attributed to 1-nitropyrene. 1-nitropyrene has been shown to be formed by the nitration of pyrene, and pyrene is one inherent product of the diffusion-controlled-combustion of hycrocarbons that occurs with Diesel engine operation. Nitrogen dioxide, in the presence of water vapor, is shown to be a potential nitrating agent, and this gas can be produced by the high temperature oxidation of the nitrogen contained in the oxidant. These results are based on studies which used a well-documented engine, model fuel, model oxidants, and synthetic lubricant.
Technical Paper

Use of Vegetable Oil Lubricant in a Low Heat Rejection Engine to Reduce Particulate Emissions

Thermal barrier coated diesel engines, also known as low heat rejection (LHR) engines, have offered the promise of reducing heat rejection to the engine coolant and thereby increasing overall thermal efficiency. However, the larger market potential for thermal barrier coated engines may be in retrofitting in-service diesel engines to reduce particulate emissions. Prior work by the authors has demonstrated a significant decrease in particulate emissions from a thermal barrier coated, single-cylinder, indirect injection (IDI) diesel engine, primarily through reduction of the volatile (VOF) and soluble (SOF) fraction of the particulate. This prior work relied on conventional, commercially available, petroleum-based lubricants. The present study concerns the additional benefits for particulate reduction provided by vegetable oil lubricants. These lubricants are derived from renewable resource materials and can provide a reduction in lubricant generated particulate matter.
Technical Paper

Viscosity of Drive-Line Lubricants by a Special Mini-Rotary Viscometer Technique

Current specifications for automatic-transmission fluids and gear oils have viscosity limits which are determined by ASTM D 2983. However, that test is plagued by poor precision. This paper describes the development of a method using the Mini-Rotary Viscometer to make the determination of apparent viscosity at the same nominal shear stress as ASTM D 2983. In this test procedure, samples are cooled in a manner similar to that described in ASTM D 2983. Experimental data were obtained on a mixture of 17 automatic-transmission and gear-oil fluids that included a number of different formulation strategies and commercial products. The results of this method yield a nearly one to one correlation with the results determined by ASTM D 2983.