Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Characterization of Regulated and Unregulated Cold Start Emissions for Different Real World Urban Driving Cycles Using a SI Passenger Car

2008-06-23
2008-01-1648
An in-vehicle FTIR emission measurement system was used to investigate the exhaust emissions under different real world urban driving conditions. Five different driving cycles were developed based on real world urban driving conditions including urban free flow driving, junction maneuver, congested traffic and moderate speed cruising. The test vehicle was a EURO 2 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst and real time fuel consumption measurement system. Both regulated and non-regulated emissions were measured and analyzed for different driving cycles. All journeys were started from cold. The engine warm up features and emissions as a function of engine warm up for different driving conditions were investigated.
Technical Paper

Diesel Fumigation Partial Premixing for Reduced Particulate Soot Fraction Emissions

1998-02-23
980532
Diesel fuel was injected into the inlet air port of a Perkins 4-236 NADI diesel engine using a Stanadyne 5 micron fuel injector directed onto the back of the inlet valve so as to give the best port fuel injection vaporisation. The fuel was timed to be injected when the inlet valve was open and the exhaust valve closed. Up to 20% of the maximum power fuel flow was injected into the inlet port and the effect is to reduce the diffusion burning phase of diesel combustion at maximum power and hence to reduce soot emissions. The results show that an older relatively high emitting diesel engine can be retrofitted with this technology to produce large soot emission reductions with soot reduced to the level of modern low emission engines. Fumigation also decreases the ignition delay, which at constant fuel injection timing reduces the NOx emissions.
Journal Article

Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel

2009-11-02
2009-01-2642
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Technical Paper

Effects of an on Line Bypass Oil Recycler on Emissions with Oil Age for a Bus Using in Service Testing

2001-09-24
2001-01-3677
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 2 emissions compliance single decker buses, fitted with Cummins 6 cylinder 8.3 litre turbocharged intercooled engines and coded as Bus 4063 and 4070. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. Bus 4063 showed an apparent deterioration on emissions with time while Bus 4070 showed a stabilised trend on emissions with time for their baseline tests without the recycler fitted. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 2000 miles.
Technical Paper

Evaluation of a FTIR Emission Measurement System for Legislated Emissions Using a SI Car

2006-10-16
2006-01-3368
A series of chassis dynamometer test trials were conducted to assess the performance of a Fourier Transform Infra Red (FTIR) system developed for on-road vehicle exhaust emissions measurements. Trials used a EURO 1 emission compliant SI passenger car which, alongside the FTIR, was instrumented to allow the routine logging of engine speed, road speed, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. The chassis dynamometer facility incorporated an ‘industry standard’ measurement system comprising MEXA7400 gas analyzer and CVS bag sampling which was the ‘benchmark’ for the evaluation of FTIR legislated gas-phase emissions (CO, NOx, THC and CO2) measurements. Initial steady state measurements demonstrated strong correlations for CO, NOx and THC (R2 of 0.99, 0.97 0.99, respectively) and a good correlation for CO2 (R2 = 0.92).
Technical Paper

Impact of Ambient Temperatures on Exhaust Thermal Characteristics during Cold Start for Real World SI Car Urban Driving Tests

2005-10-24
2005-01-3896
Thermal characteristics of SI engine exhaust during cold start and warm up period were investigated for different ambient temperatures (-2 to 32 °C). A Euro 1 emission compliance SI car was tested using a real world urban driving cycle to represent typical city driving patterns and simulate ECE15 urban driving cycle. The test car was equipped with 27 thermocouples along the engine and exhaust pipes so as to measure metal and exhaust gas temperatures along the engine, exhaust and catalyst. The characteristics of thermal properties of engine, exhaust system and catalyst were studied as a function of warm up time and ambient temperature. The temperature and time of the light-off of catalyst were investigated so as to evaluate the effect of thermal properties of the catalyst on emissions. The results show that the coolant water reached the full warm up about 5 minutes in summer and 9 minutes in winter after a cold start.
Technical Paper

Impact of Ambient Temperatures on VOC Emissions and OFP during Cold Start for SI Car Real World Urban Driving

2009-06-15
2009-01-1865
New EU environmental law requires 31 ozone precursor VOCs (Volatile Organic Compounds) to be measured for urban air quality control. In this study, 23 out of the 31 ozone precursor VOCs were measured at a rate of 0.5 HZ by an in-vehicle FTIR (Fourier Transform InfraRed) emission measurement system along with 15 other VOCs. The vehicle used was a EURO2 emission compliant SI car. The test vehicle was driven under real world urban driving conditions on the same route by the same driver on different days at different ambient temperatures. All the journeys were started from cold. The VOC emissions and OFP (Ozone Formation Potential) as a function of engine warm up and ambient temperatures during cold start were investigated. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOCs was monitored.
Technical Paper

Improvements in Lubricating Oil Quality by an On Line Oil Recycler for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0699
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had lubricating oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the oil quality and fuel and lubricating oil consumption on the same vehicles and engines with and without the on-line bypass oil recycler. Engine oils were sampled and analysed about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

Investigation of Regulated and Non-Regulated Cold Start Emissions using a EURO3 SI Car as a Probe Vehicle under Real World Urban Driving Conditions

2008-10-06
2008-01-2428
Regulated and non-regulated tailpipe exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. A EURO3 emission compliant SI car was used as a probe vehicle. An urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the TWC needed approximately 200 seconds to reach full conversion efficiency. THC and NOx emissions exceeded the EURO 3 exhaust emission legislation. CO2 emissions were well above the type approval value of this type of the vehicle. Greenhouse gases (methane and nitrous oxide) and toxic hydrocarbons such as benzene were predominantly emitted during cold start period from 0 to 200 seconds of the engine start. The results had a reasonable repeatability for most of the emissions.
Technical Paper

Reduction of Exhaust Emissions by a Synthetic Lubricating Oil with Higher Viscosity Grade and Optimized Additive Package for a Heavy Duty DI Diesel Engine Test

2008-10-06
2008-01-2489
A 10W-50 G4 synthetic lubricating oil (EULUBE oil) was tested on a heavy duty DI diesel engine under two steady state conditions. The exhaust emissions were measured and compared to a 10W-30 CF semi-synthetic lubricating oil. The EULUBE oil contained the friction reduction additive to improve the fuel economy. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Gaseous and particulates emissions were measured. Particulate size distribution was measured using ELPI and SMPS. The particulate samples were analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. The results showed a significant reduction by synthetic lubricating oil in gaseous hydrocarbon emissions, total particulate mass, particulate carbon and ash.
Journal Article

Study of Thermal Characteristics and Emissions during Cold Start using an on-board Measuring Method for Modern SI Car Real World Urban Driving

2008-04-14
2008-01-1307
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a modern EURO4 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst so as to match thermal characteristics to emission profiles. A free flow urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the warm up of the lubricating oil needed 15 minutes. The TWC needed about 200 seconds to reach full conversion efficiency. CO, THC and NOx emissions exceeded the EURO4 exhaust emission legislation. CO2 emissions were well above the type approval value of this vehicle.
Technical Paper

Study of the Emissions Generated at Intersections for a SI Car under Real World Urban Driving Conditions

2006-04-03
2006-01-1080
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
Technical Paper

The Influence of Gasoline/Ethanol Blends on Emisssions and Fuel Economy

1992-10-01
922378
A 1117cc Ford Valencia SI engine was used to investigate the influence on emissions of relatively large (10-30%) additions of ethanol to gasoline. The ethanol was shown to extend the lean burn range and improve the specific energy consumption in the lean burn region. Addition of ethanol significantly reduced NOx and CO by over 50% and increased slightly HC and condensible hydrocarbons, but had little effect on NMHC.
Technical Paper

The Influence of Lubricating Oil Age on Oil Quality and Emissions from IDI Passenger Car Diesels

1999-03-01
1999-01-1135
Two Ford IDI passenger car diesel engines, 1.6 and 1.8 litres, were tested over a 100 hour lube oil ageing period with engine out emission samples every 15 hours. The 1.6 litre engine was tested with 5% EGR and the 1.8 litre engine with 15% EGR. Comparison was also made with previous work using an older Petter AA1 engine. The three engines had different dependencies of particulate emissions on the lube oil age. The 1.6 litre engine increased the particulates from 1 to 2.5 g/kg of fuel, whereas the 1.8 litre engine first decreased the particulate emissions from 3 to 1 g/kg over 50 hours of oil age and then they increased to 2 g/kg at 100 hours. This was similar to the previous work on the Petter AA1 engine, where the emissions first decreased and then increased as the oil aged. For the 1.8 litre engine the lube oil fraction of the VOF was high with fresh oil and decreased with time for the first 50 hours and then remained steady.
Technical Paper

The Influence of Speciated Diesel Fuel Composition on Speciated Particulate SOF Emissions

1998-02-23
980527
A base diesel fuel with 37% 1-3 ring aromatics and 12.9% PAH was passed through a dearomatising process that removed the two and three ring aromatics and reduced the single ring aromatics to 14%. These two fuels plus a combination of 60% of the original fuel with 40% of the low aromatic fuel were tested on a Perkins Phaser TCIC diesel engine of US 1991 emissions standards over the EC 13 mode cycle. The fuels and particulate SOF were analysed for all the n-alkanes and all of the PAH of significant concentration. The high speed maximum power particulate SOF were analysed in detail for all three fuels and mass emissions of 15 n-alkanes and 15 PAH determined and 15 other non-fuel PAH searched for. Most of the results showed that the composition of the SOF in terms of n-alkane and PAH was predominantly unburnt fuel compounds, the fuel with negligible PAH had very low PAH emissions compared with the parent fuel with a high PAH content.
Technical Paper

The Influence of an Oil Recycler on Lubricating Oil Quality with Oil Age for a Bus Using in Service Testing

2000-03-06
2000-01-0234
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater, to remove water and light diesel fractions in the oil. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical Euro 2 emissions compliance single decker buses, fitted with Cummins 6 cylinder 8.3 litre turbocharged intercooled engines. These vehicles had oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. Comparison was made with the oil quality on the same vehicles and engines with and without the on-line recycler. Oil samples were analysed about every 2000 miles. All tests started with an oil drain and fresh lubricating oil.
Technical Paper

The Influence of an On Line Oil Recycler on Oil Quality with Oil Age from a Low Emission DI Diesel Engine

2003-10-27
2003-01-3226
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infrared heater, to remove water and light diesel fractions in the oil. The impact of this oil recycler with 1 micron fine bypass filter on oil quality was investigated over a 72 hour oil age. Comparisons tests were undertaken without and with the recycler on a Euro 2 Perkins Phaser 180Ti 6 cylinder 6 litre turbo-charged inter-cooled DI diesel engine. The tests were carried out at 2000rpm and 100kW with 473 Nm load. A stop start test cycle was used with a cold start each time and a typical test period of 2 hours. The results showed that the oil quality in this low emission engine test was extremely good. The on line recycler achieved improvements in the oil quality. With the recycler, the carbon accumulation rate in the oil was reduced by 78%. The carbon removal rate by the recycler was 0.40 g/hr. The wear metals in the oil were significantly reduced.
Technical Paper

The Measurement of Lubricating Oil Combustion Efficiency Using Diesel Particulate Analysis

1998-02-23
980523
The relationship between a diesel engine lubricating oil consumption and the particulate volatile unburnt lube oil emissions depends on the combustion efficiency of the lube oil in the engine. Very little data exists on this topic and this is reviewed. An experimental procedure for the determination of lubricating oil consumption from a calcium mass balance between the lubricating oil and particulate was used combined with a thermogravimetric analysis of the particulate to obtain the unburnt lube oil emissions, together these techniques enabled the lube oil combustion efficiency to be determined This technique only requires the particulate filter paper as an experimental measurement in the engine test. Initial results for a Perkins 4-236 NA DI diesel engine are presented for a range of loads and speeds.
X