Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

A Solution to Fuel Vaporization Problem in a Power Nozzle

2009-04-20
2009-01-1051
A power nozzle is a fuel injection actuator in which fuel is instantly compressed and then discharged by a solenoid piston pump with nozzle. Fuel vaporization inside the power nozzles is a challenging issue. This paper presents an effective solution to the fuel vaporization problem in the power nozzle. An applied physical process, fluid boundary layer pumping (FBLP), is found in this study. FBLP can result in fuel circulation within the fuel line of the power nozzle, which on one hand brings heat out of the power nozzle, and on the other hand blocks vapor from entering the piston pump.
Technical Paper

Characteristics of Rail Pressure Fluctuations under Two-Injection Conditions and the Control Strategy Based on ANN

2017-10-08
2017-01-2212
High-pressure common rail (HPCR) fuel injection system is the most widely used fuel system in diesel engines. However, when multiple injection strategy is used, the pressure wave fluctuation is un-avoided due to the opening and closing of the needle valve which will affect the subsequent fuel injection and combustion characteristics. In this paper, several parameters: injection pressure, injection intervals, the main injection pulse widths are investigated on a common rail fuel injection test rig with two injection pulses to explore their effect on the fuel injection rate and fuel quantity. The result showed that the longer injection interval between the pilot and main injections will lead to a rail pressure drop at the beginning of the main injection so that a smaller fuel quantity will be delivered. The main injection pulse width also influences fuel injection rate and the main fuel quantity.
Technical Paper

Characteristics of Single Fuel Droplet Impact on Oil Film

2019-04-02
2019-01-0304
In order to better understand the spray impingement behavior of the gasoline direct injection (GDI) engine, this paper used the laser induced fluorescence (LIF) test method to conduct basic research on the fuel droplet impact onto the oil film. The effects of different incident droplet Weber number, dimensionless oil film thickness and oil film viscosity on the morphology of oil film after impact were investigated. And the composition of splashing droplets after impingement was analyzed. The morphology of oil film after impact was divided into three categories: stable crown, delayed splash crown, and prompt splash crown. The stable crown has only splashing fuel droplets, the splashing droplets of delayed splash crown are consist of fuel and oil film. The splashing droplets of prompt splash crown mainly include the oil film. It is shown that the larger the Weber number of incident droplets, the larger the dimensionless crown height and diameter, the easier the oil film will splash.
Technical Paper

Combustion Characteristics of Wall-Impinging Diesel Fuel Spray under Different Wall Temperatures

2017-10-08
2017-01-2251
The flame structure and combustion characteristics of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set to 773 K. The wall temperatures (Tw) were set to 523 K, 673 K and 773 K respectively. Three different injection pressures (Pi) of 600 bar, 1000bar and 1600bar, two ambient pressures (Pa) of 2 MPa and 4 MPa were applied. The flame development process of wall-impinging spray was measured by high-speed photography, which was utilized to quantify the flame luminosity intensity, ignition delay and flame geometrical parameters. The results reveal that, as the wall temperature increases, the flame luminosity intensity increases and the ignition delay decreases.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Experimental Investigation on the Effects of Injection Strategy on Combustion and Emission in a Heavy-Duty Diesel Engine Fueled with Gasoline

2017-10-08
2017-01-2266
Gasoline partially premixed combustion shows the potential to achieve clean and high-efficiency combustion. Injection strategies show great influence on in-cylinder air flow and in-cylinder fuel distribution before auto-ignition, which can significantly affect the combustion characteristics and emissions. This study explored the effects of various injection strategies, including port fuel injection (PFI), single direct injection (DIm), double direct injection (DIp+DIm) and port fuel injection coupled with a direct injection (PFI+DIm) on the combustion characteristics and emissions in a modified single cylinder heavy-duty diesel engine fueled with 92# gasoline at low load. The investigation consists of two parts. Firstly, the comparison among PFI, PFI+DIm, and DIp+DIm strategies was conducted at a fixed CA50 to explore the effects of PFI+DIm and DIp+DIm strategies on the thermal efficiency and combustion stability.
Technical Paper

Kinetic Modeling of Soot Formation with Highlight in Effects of Surface Activity on Soot Growth for Diesel Engine Partially Premixed Combustion

2013-04-08
2013-01-1104
In this study, Partially Premixed Combustion (PPC) on a modified heavy-duty diesel engine was realized by hybrid combustion control strategy with flexible fuel injection timing, injection rate pattern modulation and high ratio of exhaust gas recirculation (EGR) at different engine loads. It features with different degrees of fuel/air mixture stratifications. The very low soot emissions of the experiments called for further understanding on soot formation mechanism so that to promote the capability of prediction. A new soot model was developed with highlight in effects of surface activity on soot growth for soot formation prediction in partially premixed combustion diesel engine. According to previous results from literatures on the importance of acetylene as growth specie of PAH and soot surface growth, a gas-phase reduced kinetic model of acetylene formation was developed and integrated into the new soot model.
Technical Paper

Numerical Investigation of the Potential of Late Intake Valve Closing (LIVC) Coupled with Double Diesel Direct-Injection Strategy for Meeting High Fuel Efficiency with Ultra-Low Emissions in a Heavy-Duty Reactivity Controlled Compression Ignition (RCCI) Engine at High Load

2019-04-02
2019-01-1166
The potential of diesel/gasoline RCCI combustion coupled with late intake valve closing (LIVC) and double direct injection of diesel for meeting high fuel efficiency with ultra-low emissions was investigated in this study. The study was aiming at high load operation in a heavy-duty diesel engine. Based on the reactivity stratification of RCCI combustion, the employment of double injection of diesel fuel provided concentration stratification of the high-reactivity fuel, which is to further realize effective control of the combustion process. Meanwhile, late intake valve closing (LIVC) strategy is introduced to control the maximum in-cylinder pressure and nitrogen oxides (NOx) emissions.
Technical Paper

Selection of Swirl Ratio in Diesel Engines Based on Droplet Trajectory Analysis

2017-03-28
2017-01-0813
Matching fuel injection and airflow motion is critical for the optimization of fuel-air mixing and combustion process in diesel engines. In this study, the effects of swirl flow on liquid droplet motion and the selection of swirl ratio, which are known as the major concern in organizing airflow motion, were investigated based on theoretical analysis of droplet trajectories. The evaporating droplets with various initial conditions are assumed to be transported in a solid-body-like swirl field, and their trajectories were derived based on force analysis. To evaluate fuel-air mixing quality, a new parameter with respect to fuel vapor distribution was proposed. Based on this methodology, the effects of swirl velocity, droplet size, as well as liquid-gas density ratio on droplet trajectory were discussed under diesel-engine-like boundary conditions.
Technical Paper

Study on Dynamic Characteristics of High-Speed Solenoid Injectors by Means of Contactless Measurement

2017-10-08
2017-01-2313
In-cylinder direct-injected technology provides a flexible and accurate optimization for internal combustion engines to reduce emission and improve fuel efficiency. With increasingly stringent requirements for the emissions of nitrogen oxides (NOx) and CO2, the content of injections in an engine combustion cycle has reached 7 to 9 times in gasoline direct injection (GDI) and the diesel engine with high-pressure common rail (HPCR). Accurate control of both time and quantity of injection is critical for engine performance and emissions, while the dynamic response of injector spray characteristics is a key factor. In this paper, a test bench was built for monitoring the dynamic response of solenoid injectors with high-speed micro-photography and synchronous current collection system. Experimental studies on the dynamic response of GDI and HPCR solenoid injectors were carried out.
Journal Article

Study on the Double Injection Strategy of Gasoline Partially Premixed Combustion under a Light-Duty Optical Engine

2016-10-17
2016-01-2299
Gasoline partially premixed combustion (PPC) is a potential combustion concept to achieve high engine efficiency as well as low NOx and soot emissions. But the in-cylinder process of PPC is not well understood. In the present study, the double injection strategy of PPC was investigated on a light-duty optical engine. The fuel/air mixing and combustion process of PPC was evaluated by fuel-tracer planar laser-induced fluorescence (PLIF) and high-speed natural luminosity imaging technique, respectively. Combustion emission spectra of typical double injection case were analyzed. The primary reference fuel, PRF70 (70% iso-octane and 30% n-heptane by volume) was chosen as the lower reactivity fuel like gasoline. Double injection strategies of different first fuel injection timing and mass ratio of the two fuel injections were comparatively studied.
Technical Paper

Using Multiple Injection Strategies in Diesel PCCI Combustion: Potential to Extend Engine Load, Improve Trade-off of Emissions and Efficiency

2011-04-12
2011-01-1396
The Premixed Charge Compression Ignition (PCCI) engine has the potential to reduce soot and NOx emissions while maintaining high thermal efficiency at part load conditions. However, several technical barriers must be overcome. Notably ways must be found to control ignition timing, expand its limited operation range and limit the rate of heat release. In this paper, comparing with single fuel injection, the superiority of multiple-pulse fuel injection in extending engine load, improve emissions and thermal efficiency trade-off using high exhaust gas recirculation (EGR) and boost in diesel PCCI combustion is studied by engine experiments and simulation study. It was found that EGR can delay the start of hot temperature reactions, reduce the reaction speed to avoid knock combustion in high load, is a very useful method to expand high load limit of PCCI. EGR can reduce the NOx emission to a very small value in PCCI.
X