Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Auto-ignition Characteristics of Lubricant Droplets under Hot Co-Flow Atmosphere

2018-09-10
2018-01-1807
It has been revealed by researches that lubricant properties have a great effect on the low-speed pre-ignition (LSPI) frequency in downsizing turbocharged direct-injection engines which are developed for better fuel economy. Droplets of lubricant or lubricant-gasoline mixture are considered to be the potential pre-ignition sources. Those droplets fly into the combustion chamber and ignite the gasoline-air mixture. To study lubricant droplets fundamentally, a novel set of droplet auto-ignition system is designed based on a Dibble Burner for this experiment. Influences of metallic additive contents, viscosities, lubricant diluted with gasoline and waste lubricant on the ignition delay of droplets are investigated by testing 12 groups of lubricants or lubricant-gasoline mixture. The equivalent diameter of each droplet generated by micro-syringes is around 2.1 mm. The co-flow temperature varies from 1123 K to 1223 K, and the experiments are carried out at atmospheric pressure.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Technical Paper

Effect of Direct Water Injection Timing on Common Rail Diesel Engine Combustion Process and Efficiency Enhancement

2017-10-08
2017-01-2281
The present work aims at optimizing diesel engine combustion efficiency with optimized water injection strategy. The engine had been modified based on a two-cylinder mechanical pump diesel engine into common rail diesel engine with capability of direct water injection. The direct water injection system was designed and manufactured independently. An air-fluid booster was utilized to establish the water injection pressure up to 40MPa. Customized diesel injector was selected to be used as water injector in this study. Water injection strategy was optimized in detail with injection timing around TDC which ranges from 12°CA BTDC to -5°CA BTDC under 10 bar IMEP. The engine efficiency can be improved under selected water injection strategy due to the increment of work fluid in the combustion chamber. Moreover, the nitric oxides emissions show decrement around 10%.
Technical Paper

Effect of Port Water Injection on the Knock and Combustion Characteristics for an Argon Power Cycle Hydrogen Engine

2024-04-09
2024-01-2612
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine.
Technical Paper

Investigation on the Ignition Properties of 1-Propanol and 1-Butanol under Fuel-Lean Conditions

2021-04-06
2021-01-0564
To mitigate the global warming and to develop sustainable transportation, investigations on combustion properties of carbon neutral fuels i.e., electro-fuels and bio-fuels such as propanol and butanol are essential. In the past, there were very limited researches concerning the fuel-lean combustion of those fuels, which is however a promising method for reducing the NOx emissions. Moreover, the literature chemical kinetic mechanisms have not been widely validated against the fuel-lean combustion data. Ignition delay time (IDT) is one key parameter and is widely used for validation of chemical kinetic mechanisms. The measurements of IDTs of diluted 1-propanol (nC3H7OH, CH3CH2CH2OH) and 1-butanol (nC4H9OH, CH3CH2CH2CH2OH) mixtures (with 90% bath gas (Ar+N2)) were therefore conducted in a rapid compression machine (RCM), at temperatures between 800 and 1000 K, pressures of 20 and 40 bar, under lean combustion conditions with equivalence ratios (ф) of 0.25, 0.5 and 0.9.
Technical Paper

Numerical Study on the Combustion Characteristics of an Ammonia/Hydrogen Engine with Active Prechamber Ignition

2024-04-09
2024-01-2104
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Thermodynamic and Chemical Analysis of the Effect of Working Substances on the Argon Power Cycle

2021-04-06
2021-01-0447
The Argon Power Cycle engine is a novel concept for high efficiency and zero emission through the replacement of N2 by Ar. However, the higher in-cylinder temperature and pressure as by-products cause heavier knock. The anti-knock strategies, such as reducing compression ratio and retarding ignition time, offset the efficiency increased by the Argon Power Cycle. Therefore, knock control becomes the most urgent task for the Argon Power Cycle engine development. The anti-knock methods, including fuel replacement, ultra-lean combustion, high dilution combustion, and water injection, were considered. The simulated ignition delay times were used to evaluate the probability of knock. The Otto cycle, combined with chemical equilibrium, was utilized to confirm the effect on the thermal conversion efficiency and each in-cylinder thermodynamic state parameter. The results show that the ignition delay times increase by a factor of two when the Ar dilution ratio increases from 79% to 95%.
Technical Paper

Transient Characteristics of Combustion and Emissions during Start up at Higher Cranking Speed in a PFI Engine for HEV Application

2008-10-06
2008-01-2420
The transient characteristics of combustion and emissions during the engine start up at different higher cranking speeds for hybrid electric vehicle (HEV) applications were presented in this paper. Cycle-by-cycle analysis was done for each start up case. Intake air mass during the first several cycles decrease as the engine was cranked at higher speed. Ignition timing is delayed with higher cranking speed, which leads to an increase of exhaust temperature. For various start up cases, similar quantity of fuel is injected at the first cycle, but the ignition timing is significantly delayed to meet the acceleration requirement when cranking speed enhanced. Because of the deterioration of intake charge, the air-fuel mixture is over-enriched in the first several cycles for the cases at higher cranking speed. With cranking speed is increased, the in-cylinder residual gas fraction rises, which leads to poor combustion and decrease of mass fraction of burned fuel.
X