Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Chassis Dynamometer and On-Road Evaluations of Emissions from a Diesel-Electric Hybrid Bus

2017-03-28
2017-01-0984
Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly. Then the Real Driving Emissions (RDE) of the DHEB are compared with the dynamometer test results.
Technical Paper

Comparison of Particulate Emissions of a Range Extended Electric Vehicle under Different Energy Management Strategies

2019-04-02
2019-01-1189
Range extended electric vehicles achieve significant reductions in fuel consumption by employing as an energy source a small displacement combustion engine that is optimized for high efficiency at one, or a few, operating points. The present paper examines the impact of various energy management strategies on the particulate emissions from the auxiliary power unit (APU) of a range extended electric bus, including optimized auxiliary power unit (APU) on/off strategy, single-point strategy, two-point strategy, power-following strategy and equivalent fuel consumption minimization strategy (ECMS). In addition, this paper also compares the particulate emissions of single energy storage system and composite energy storage system on single-point energy management strategy.
Technical Paper

Effect of Timing Strategy on Mixture Formation, Performance and Emission of Inlet Injection Hydrogen Engine

2024-04-09
2024-01-2614
In order to scrutinize the timing variables impacting the combustion performance and emissions of the Port Fuel Injection hydrogen engine (PFI-H2ICE), a model of a four-cylinder hydrogen engine is meticulously built utilizing the 1D software GT-POWER. The effect of excess air coefficients and timing strategies (including the intake valve opening timing (IVO), the start of injection timing (SOI), and ignition timing) is analyzed in this study. The main conclusions are as follows: The hydrogen engine remold from the Isuzu JE4N28 nature gas engine manifests a lean combustion threshold ranging between 2.0 and 2.5. Notably, advancing intake valve opening timing by 20°CA has proven beneficial to the brake thermal efficiency (BTE) of the hydrogen engine while reducing the NOx emissions by a substantial margin, and advancing intake valve opening timing bears the virtue of strengthen the positive influence of the start of injection timing upon the engine's combustion performance.
Technical Paper

Effects of DOC and CDPF Catalyst Composition on Emission Characteristics of Light-Duty Diesel Engine with DOC + CDPF + SCR System

2018-04-03
2018-01-0337
With regulatory standards for diesel engine emissions becoming stricter worldwide, integrated catalytic systems are becoming increasingly necessary. One of the better approaches is to use an after-treatment system consisting of a diesel oxidation catalyst (DOC), a catalyzed diesel particulate filter (CDPF), and a selective catalytic reduction (SCR), but many factors can affect how well this system works. This study investigates the effects of DOC and CDPF catalyst composition on emissions characteristics for DOC + CDPF + SCR systems by collecting reactor and engine data. The reactor results show that the light-off temperatures (T50) of CO and C3H6 increase with the growth of Pt:Pd ratio while the T50 of NO degrades. An engine dynamometer test was conducted on a light-duty diesel engine equipped with DOC + CDPF + SCR. The results show light-off curves of CO and THC that are smoother than the reactor data.
Technical Paper

Effects of Zeolite Structure, Cu Content, Feed Gas Space Velocity, NH3/NOx Ratio, and Sulfur Poisoning on the Performance of Zeolite-Based SCR Catalyst

2019-04-02
2019-01-0736
To meet the increasingly stringent nitrogen oxides (NOx) emission regulations of diesel engines, the selective catalytic reduction (SCR) of NOx with ammonia (NH3) has become the current mainstream technical route. Experiments in the present study included the performance of Cu-Beta catalyst and Cu-CHA catalyst before and after hydrothermal aging, and the effects of Cu content, feed gas space velocity (GHSV), NH3/NOx ratio, and sulfur poisoning on the performance of Cu-CHA catalyst. In the low temperature range (T≤250 °C), the T50 and T90 of Cu-Beta catalyst are 139 °C and 165 °C, respectively, while those of Cu-CHA catalyst are 150 °C and 183 °C, respectively. In the high temperature range (T>400 °C), the NOx conversion of Cu-CHA catalyst is generally higher than that of Cu-Beta catalyst. The temperature window of Cu-Beta catalyst is 154 to 514 °C, while that of Cu-CHA catalyst is 168 to 522 °C. Cu-CHA catalyst exhibits better catalytic activity at medium and high temperatures.
Technical Paper

Experimental Investigation on Particle Number and Size Distribution of a Common Rail Diesel Engine Fueling with Alternative Blended Diesel Fuels

2011-04-12
2011-01-0620
An EURO 3 certified common rail diesel engine was fueled with pure petroleum diesel (EURO 4 standard) and three different alternative blended diesel fuels, 10% biodiesel blended diesel (B10), 10% gas to liquid blended diesel (G10) and 10% water emulsified diesel (E10). Tests were performed at different engine speeds and load states. Particle number concentration and size distribution data were obtained from an engine exhaust particle sizer (EEPS). Over all the working conditions, total particle and nucleation mode particle number concentration among these fuels from high to low were in this order: B10, E10, pure diesel and G10. Proportions for nucleation mode particle over all the operating states in that order were 89%, 82%, 59% and 66%. Particle size distributions of B10 and E10 presented bimodal logarithmic distributions with outstanding nucleation mode peaks at all working conditions.
Technical Paper

Experimental Study on Particulate Emission Characteristics of an Urban Bus Equipped with CCRT After-Treatment System Fuelled with Biodiesel Blend

2017-03-28
2017-01-0933
Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
Technical Paper

Experimental Study on Thermal Management Strategy of the Exhaust Gas of a Heavy-Duty Diesel Engine Based on In-Cylinder Injection Parameters

2020-04-14
2020-01-0621
The aftertreatment system is indispensable for the removal of the noxious pollutants emitted by diesel engines, whose efficiency depends largely on the exhaust gas temperature. Therefore, this study proposes a thermal management strategy including post injection, intake throttling and late post injection to improve the efficiency of the aftertreatment system for a heavy-duty diesel engine. In the experiments, the effects of main injection, post injection, injection pressure and throttle opening on the exhaust gas temperature at diesel oxidation catalyst (DOC) inlet were studied, with the influence of late post injection on the exhaust gas temperature at DOC outlet also investigated. The results showed that the reasonable control of throttle opening and post injection (such as the adjustment of injection timing and injection quantity) can significantly improve the average temperature at DOC inlet from 237.8°C to 333.6°C in the WHTC, with an increase of 40.3%.
Technical Paper

Fuel Economy and Emissions of a 7L Common Rail Diesel Engine during Torque Rise Transient Process

2015-04-14
2015-01-1068
Previous studies have indicated that longer torque increase time benefits the reduction of emissions during transient process for a diesel engine. However, quantitative conclusions on reduction of emissions and effects on fuel economy have not been made clear so far. The aim of this study was to evaluate the transient process of diesel engine under different torque increase time, and to find the quantitative statement between torque increase time, fuel economy and engine-out emissions. To do this, experiment was carried out on a 7L common rail diesel engine used for commercial vehicles. Three engine speeds (1100r·min−1, 1300r·min−1 and 1500r·min−1) were chosen to represent an engine working range. For each speed, the engine torque is increased within different time (0.5s, 1s, 2s and 5s). It was shown that, in the transient process mentioned above, engine torque increase time effects fuel economy, smoke opacity and CO emission.
Technical Paper

Investigation of Injection Strategy on Combustion and Emission Characteristics in a GDI Engine with a 50 MPa Injection System

2024-04-09
2024-01-2381
A DMS500 engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulate emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, secondary injection ratio and secondary injection end time) on particle diameter distribution and particle number density of emission were investigated. The experimental result indicates that the split injection can suppress the knocking tendency at higher engine loads. The combustion is improved, and the fuel consumption is significantly reduced, avoiding the increase in fuel pump energy consumption caused by the 50 MPa fuel injection system, but the delayed injection increases particulate matter emissions.
Technical Paper

Particle-Bound PAHs Emission from a Heavy Duty Diesel Engine with Biodiesel Fuel

2013-10-14
2013-01-2573
Regulated gaseous and particulate matter (PM) emissions in the exhaust from a heavy duty diesel engine with biodiesel fuel were studied, and the emission characteristics of PM and polycyclic aromatic hydrocarbons (PAHs) emissions in PM were highlighted. In the experiment, pure diesel fuel and B10 (a blend of diesel and biodiesel fuels with the volume ratio of 9 to 1) fuel were chosen. The study shows that, compared to the pure diesel, the emissions of PM, soluble organic fractions (SOF) and PAHs from the heavy duty diesel engine decrease when the engine burns B10 fuel, and the nitrogen oxides (NOx) emission slightly increases, while the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions also decline. Among the detected 12 kinds of PAHs, emission concentrations of 10 kinds of PAHs from the engine with B10 descend. Especially Benzo(a)pyrene equivalent toxicity (BEQ) analysis results show that the BEQ of B10 fuel decreases by 15.2% compared to pure diesel.
Journal Article

Performance Optimization Using ANN-SA Approach for VVA System in Diesel Engine

2022-03-29
2022-01-0628
Diesel engine is vital in the industry for its characteristics of low fuel consumption, high-torque, reliability, and durability. Existing diesel engine technology has reached the upper limit. It is difficult to break through the fuel consumption and emission of diesel engines. VVA (Variable Valve Actuation) is a new technology in the field of the diesel engines. In this paper, GT-Suite and ANN (artificial neural network) model are established based on engine experimental data and DoE simulation results. By inputting Intake Valve Opening crake angle (IVO), Intake Valve Angle Multiplier (IVAM) and Exhaust Valve Angle Multiplier (EVAM) into the ANN Model, and by using SA (simulated annealing algorithm), the optimized results of intake and exhaust valve lift under the target conditions are obtained.
Technical Paper

Simulation Based Visual Study of Particulate Deposition Characteristics in Millimeter-Scale Channels of a Diesel Particulate Filter

2023-04-11
2023-01-0387
The diesel particulate filter (DPF) is an effective device for reducing particulate emissions from diesel engines, while its durability and reliability after long-term use are causes for concern. Usually, particulates are considered to be uniformly deposited in DPF channels to form a cake or end plug, however, recent studies have found that a “middle channel deposit” phenomenon of particulates can form a bridge near the middle of the DPF channel. This phenomenon has serious adverse effects on the durability and reliability of the DPF, including abnormally increased pressure drop and frequent regeneration. Since the width of the DPF channel is only about 1-2 millimeters, conventional methods cannot observe the particulate deposition process inside the DPF.
Technical Paper

Study on Correlation between After-Treatment Performance and Running Conditions, Exhaust Parameters of Heavy-Duty Diesel Vehicle

2018-04-03
2018-01-0338
The increasingly stringent emission regulations have mandated the use of CCRT (catalyzed continuously regeneration trap) made by upstream DOC (diesel oxidation catalyst) and downstream CDPF (catalyzed diesel particulate filter) for heavy-duty diesel vehicles, which is proved to be the only way that can efficiently control the gaseous and particulate emissions. The performance of after-treatment is greatly influenced by the running conditions of the diesel vehicle and its exhaust parameters, so this paper intended to use grey relational analysis to study the correlation between running conditions (velocity, acceleration, VSP (vehicle specific power)), exhaust parameters (exhaust flow rate, DOC inlet temperature, concentrations of CO, THC, O2 and NOX) and the performance of DOC and CCRT based on chassis dynamometer test. Results showed that the effect of DOC on CO and THC is mainly affected by exhaust flow rate, exhaust temperature and THC concentration.
Technical Paper

Study on Real-World NOx and Particle Emissions of Bus: Influences of VSP and Fuel

2019-04-02
2019-01-1181
In this study, the real-world NOx and particle emissions of buses burning pure diesel fuel (D100), biodiesel fuel with 20% blend ratio (B20) and liquefied natural gas (LNG) were measured with portable emission measurement system (PEMS). The measurement conducted at 6 constant speed, which ranged from 10km/h to 60 km/h at 10km/h intervals, and a period of free driving condition. The relationship between vehicle specific power (VSP) and NOx/particle emissions of each bus were analyzed. The results show that the change rules of NOx, PN and PM emission factors with the increase of VSP were basically the same for the same bus, but for the bus using different fuel, the change rules may change. In VSP bin 0, the vehicles were mostly in idle condition and the emission factors of NOx, PN and PM of three buses were all in a relatively high level. In low VSP interval, which ranged from bin 0 to bin 4, the emissions of three buses first decreased and then increased with the growth of VSP.
Technical Paper

Study on Soot Oxidation Characteristics of Ce and La Modified Pt-Pd CDPF Catalysts

2023-04-11
2023-01-0390
The catalyzed diesel particulate filter with Pt and Pd noble metals as the main loaded active components are widely used in the field of automobile engines, but the high cost makes it face huge challenges. Rare earth element doping can improve the soot oxidation performance of the catalyzed diesel particulate filter and provide a new way to reduce its cost. In this paper, thermogravimetric tests and chemical reaction kinetic calculations were used to explore the effect of Pt-Pd catalysts doped Ce, and La rare earth elements on the oxidation properties of soot. The results shown that, among Pt-Pd-5%Ce, Pt-Pd-5%La, and Pt-Pd-5%Ce-5%La catalysts, Pt-Pd-5%La catalyst has the highest soot conversion, the highest low-temperature oxidation speed, and the activation energy is the smallest. Compared with soot, this catalyst reduced T10 and T20 by 82% and 26%, respectively, meaning the catalytic activity of Pt-Pd-5%La catalyst was the best.
Technical Paper

The Emission of a Diesel Engine in Different Coolant Temperature during Cold Start at High Altitude

2019-04-02
2019-01-0730
Emissions of diesel engine have been received much more attention since the Volkswagen Emission Scandal. The Euro VI emission standard has already included cold start emissions in the legislative emission driving cycles which is one of the hardest part of emission control. High altitude performance is also considered in the latest regulations which will be stricter in the future. Heating the coolant is one of the most common method to improve the cold start performance. But researches focus on the emission of a diesel engine in different coolant temperature at high altitude which up to 4500m have not been seen. The present research investigated the effect of coolant temperature on performance and exhaust emissions (gaseous and particulate emissions) during the cold start of a diesel engine. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments from 0m to 4500m, and the coolant temperature was controlled from 20°C to 60°C.
X