Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Simulation and Optimization of the Underhood Fluid Field and Cooling Performance for Heavy Duty Commercial Vehicle under Different Driving Conditions

2015-09-29
2015-01-2902
As the commercial vehicle increases staggeringly in China, environmental pollution and excessively fuel consumption can't be neglected anymore. Vehicle thermal management has been adopted by many vehicle manufactures as an ideal alternative to reduce fuel consumption and exhaust emission by its cost-efficient and effective merit. In addition, the components in heavy duty commercial vehicle engine hood may suffer overheat harm. Hence investigating the thermal characteristics in engine hood can be an effective way to identify and dismiss the potential overheat harm. In terms of this, the paper has adopted CFD simulation method to obtain the comprehensive thermal flow field characteristics of engine hood in a heavy commercial vehicle. Then by analyzing the thermal flow field in engine hood, concerning optimization strategies were put forward to improve the thermal environment.
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
X