Refine Your Search

Topic

Author

Search Results

Technical Paper

2-D Temperature Measurements of Unburned Gas Mixture in an Engine by Two-line Excitation LIF Technique

2006-10-16
2006-01-3336
Two-line excitation LIF (Laser-Induced Fluorescence) technique for 2-dimensional temperature measurements in an engine cylinder before ignition is presented. From the fundamental examinations, the combination of toluene tracer with a pair of excitation lines of 248nm and 266nm has been selected because of the high LIF intensity ratio and closer excitation wavelengths. In-cylinder thermometry is conducted using a visualized single cylinder spark ignition engine both in PFI (port-fuel-injection) and DI (direct-injection) operation. The accuracy of this technique is determined through the homogeneous PFI experiment. Temperature and fuel distribution in unburned mixture are measured simultaneously in DI operation. It exists a strong correlation between equivalence ratio and temperature inside the mixture. Temperature in the fuel rich region is lower than in the fuel lean region.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A New Tooth Flank Form to Reduce Transmission Error of Helical Gear

2000-03-06
2000-01-1153
Transmission error is the main cause of gear noise in automobile transmissions, and recently can be estimated by numerical analysis [1]. First, in this report, we establish the accurate numerical analysis of transmission error by using FE analysis and Hertz's contact analysis of gear tooth stiffness. Secondly, on the basis of the established numerical analysis, we develop a new tooth flank form to reduce transmission error. The new tooth flank form aims to ensure the coincidence of meshing stiffness at all meshing positions. Finally, a validation test using an experimental prototype is performed, and we confirm that the estimated effect by the new tooth flank form has been obtained.
Technical Paper

A Study on Natural Gas Fueled Homogeneous Charge Compression Ignition Engine - Expanding the Operating Range and Combustion Mode Switching

2007-04-16
2007-01-0176
Natural gas homogeneous charge compression ignition (HCCI) engines require high compression ratios and intake air heating because of the high auto-ignition temperature of natural gas. In the first study, the natural gas fueled HCCI combustion with internal exhaust gas recirculation (EGR) was achieved without an intake air heater. The effects of the combustion chamber configuration, turbocharging, and external EGR were investigated for expanding the operating range. As a result, it was cleared that the combination of internal / external EGR and turbocharging is effective for expanding the HCCI operational range toward high loads. Meanwhile, the HCCI combustion characteristics at high engine speeds were unstable because of an insufficient reaction time for auto-ignition. Although the engine operation with a richer air-fuel ratio was effective for improving the combustion stability, the combustion noise (CN) was at an unacceptable level.
Technical Paper

Analysis of Mixture Formation Process in a Stoichiometric Direct Injection Gasoline Engine

2003-03-03
2003-01-0066
The stoichiometric direct injection gasoline engines have higher torque performance than the port injection engines, as the volumetric efficiency can be increased due to the cooling effects of charging air by the fuel evaporation in the cylinder. They need only 3-way catalyst, leading to the cost down. However there exists the injection timing (region) that increased volumetric efficiency does not lead to higher torque. In order to investigate the phenomena, the in-cylinder mixture formation process has been analyzed by the LIF and the CFD techniques. As the results, it has been revealed that the phenomena are caused by the inhomogeneous mixture distribution before the ignition timing.
Technical Paper

Analysis of Poor Engine Response Caused by MTBE-Blended Gasoline from the Standpoint of Fuel Evaporation

1992-02-01
920800
Fifty percent distillation temperature (T50) can be used as a warm-up driveability indicator for a hydrocarbon-type gasoline. MTBE-blended gasoline, however, provides poorer driveability than a hydrocarbon-type gasoline with the same T50. The purposes of this paper are to examine the reason for poor engine driveability caused by MTBE-blended gasolines, and to propose a new driveability indicator for gasolines including MTBE-blended gasolines. The static and dynamic evaporation characteristics of MTBE-blended gasolines such as the evaporation rate and the behavior of each component during evaporation were analyzed mainly by using Gas Chromatography/Mass Spectrometry. The results of the analysis show that the MTBE concentration in the vapor, evaporated at ambient temperature (e.g. 24°C), is higher than that in the original gasoline. Accordingly, the fuel vapor with enriched MTBE flows into the combustion chamber of an engine just after the throttle valve is opened.
Technical Paper

Anti- Combustion Deposit Fuel Development for 2009 Toyota Formula One Racing Engine

2011-08-30
2011-01-1983
Toyota participated in Formula One1 (F1) Racing from 2002 to 2009. As a result of the downturn in the world economy, various engine developments within F1 were restricted in order to reduce the cost of competing in F1. The limit on the maximum number of engines allowed has decreased year by year. Toyota focused on the engine performance deterioration due to the combustion chamber deposits. In 2009, Toyota was successful in reducing around 40% of the deterioration by making combustion chamber cleaner in cooperation with ExxonMobil. This contributed to good result of 2009 F1 season for Toyota, including two second place finishes.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Journal Article

Backward Flow of Hot Burned Gas Surrounding High-Pressure Diesel Spray Flame from Multi-hole Nozzle

2015-09-01
2015-01-1837
The backward flow of the hot burned gas surrounding a diesel flame was found to be one of the factors dominating the set-off length (also called the lift-off length), that is, the distance from a nozzle exit into which a diffusion flame cannot intrude. In the combustion chamber of an actual diesel engine, the entrainment of the surrounding gas into a spray jet from a multi-hole nozzle is restricted by the walls and adjacent spray jets, which induces the backward flow of the surrounding gas. A new momentum theory to calculate the backward flow velocity was established by extending Wakuri's momentum theory. Shadowgraph imaging in an optical engine successfully visualized the backward flow of the hot burned gas.
Technical Paper

Cause of Exhaust Smoke and Its Reduction Methods in an HSDI Diesel Engine Under High-Speed and High-Load Conditions

2002-03-04
2002-01-1160
The cause of the exhaust smoke and its reduction methods in a small DI Diesel engine with a small-orifice-diameter nozzle and common rail F.I.E. were investigated under high-speed and high-load condition, using both in-cylinder observations and Three-dimensional numerical analyses. The following points were clarified during this study. At these conditions, fuel sprays are easily pushed away by a strong swirl, and immediately flow out to the squish area by a strong reverse squish. Therefore, the air in the cavity is not effectively used. Suppressing the airflow in a piston cavity, using such ideas as enlarging the piston cavity diameter or reducing the port swirl ratio, decreases the excessive outflow of the fuel-air mixture into the squish area, and allows the full use of air in the whole cavity. Hence, exhaust smoke is reduced.
Journal Article

Clarification of Transient Characteristics by Coupled Analysis of Powertrains and Vehicles

2016-04-05
2016-01-1314
With the goal of improving drivability, this research aimed to clarify the mechanism of vehicle longitudinal acceleration, focusing on tip-in acceleration. Conventional typical analysis methods include experimental modal and model-based analysis. However, since the former requires the measurement of impulses and other input forces while the vehicle is stopped, measurement under actual driving conditions is difficult. The latter requires characteristic values such as the stiffness and damping coefficients to be identified in advance, which cannot be achieved either easily or precisely. Therefore, this paper proposes a new experiment-based analysis method. This method enables the acquisition of engine torque and transmission torque/force by measuring only the acceleration values of some components under driving conditions.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Technical Paper

Development of Compact, High Capacity AWD Coupling with DLC-Si Coated Electromagnetic Clutch

2006-04-03
2006-01-0820
We have developed a high capacity electromagnetic clutch by means of Si-containing diamond-like carbon (DLC-Si) coating. The durability of the new clutch is enhanced up to 8 times higher than that of the conventional one. Such a superior performance is due to several tribological properties of the DLC-Si film and micro morphology on the clutch surface. In particular, the DLC-Si plays a significant role in maintaining the groove shape of the clutch and giving sufficient friction in fluid, which is required for a drivetrain device. Besides, our deposition process (using direct current plasma-assisted chemical vapor deposition) has afforded homogeneous DLC-Si-coated clutches in large quantities. These techniques have enabled us to reduce the number of clutch discs per coupling and achieve a more compact and higher capacity AWD coupling at a lower cost.
Technical Paper

Development of Deodorant Filter for Diesel Smell

2004-03-08
2004-01-1384
One of typical outcome of the desire for increasing passenger comfort is that especially for deodorant efficiency. Since customers are becoming so sensitive about cabin odor, development of more effective deodorant filter is strongly required. Out side of vehicle, which most being disliked is diesel odor, therefore, analysis on this diesel gas and investigation to identity the ingredient for the main cause of the strong odor were executed, and found that acetaldehyde gas is the one. Therefore, identification of the chemical that adsorb acetaldehyde gas with being impregnated in activated carbon was required, since activated carbon itself does not have ability of adsorbing acetaldehyde gas, and finally found appropriate chemical, vitamin Bx. At the end of this report, sensory evaluation result by twenty panelists with deodorant type cabin air filter impregnated with vitamin Bx, and its efficiency for deodorant will be shown at the end of this report.
Technical Paper

Development of a Compact Adsorption Heat Pump System for Automotive Air Conditioning System

2016-04-05
2016-01-0181
In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
Technical Paper

Development of an On-Board Type Oil Deterioration Sensor

1993-10-01
932840
According to the principle of pH measurement, an on-board type engine oil deterioration sensor has been developed. The developed sensor is composed of a Pb and oxidized stainless steel electrodes. The sensor signal shows a good linear relationship to the quasi-pH value of the oil. Especially in the region where the oil deterioration proceeds, the remaining basic additives in the oil is easily estimated from the sensor signal.
Technical Paper

Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability

2006-04-03
2006-01-0028
A concept of dual-fuel, Premixed Compression Ignition (PCI) combustion controlled by two fuels with different ignitability has been developed to achieve drastically low NOx and smoke emissions. In this system, isooctane, which was used to represent high-octane gasoline, was supplied from an intake port and diesel fuel was injected directly into an engine cylinder at early timing as ignition trigger. It was found that the ignition timing of this PCI combustion can be controlled by changing the ratio of amounts of injected two fuels and combustion proceeds very mildly by making spatial stratifications of ignitability in the cylinder even without EGR, as preventing the whole mixture from igniting simultaneously. The operable range of load, where NOx and smoke were less than 10ppm and 0.1 FSN, respectively, was extended up to 1.2MPa of IMEP using an intake air boosting system together with dual fueling.
Technical Paper

Elastohydrodynamic Lubrication Model of Connecting Rod Big End Bearings; Comparison with Experiments by Diesel Engine

1995-10-01
952549
The EHD lubrication model of connecting rod big end bearings is compared with experiments using an automotive diesel engine. The axial load and the bending moment near the middle of rod length were derived from strain measurements and compared with the theoretical results based on engine dynamics. Although oscillation appeared on bending moment at 5000 rpm, the theoretical load almost agreed with the experiment. The EHD lubrication theory and the experiments were compared by the histories of clearances and the journal center orbits in the bearing. The theoretical results agreed well with the experimental one. The deformation of the bearing appeared both in the theory and in the experiment at 3000 rpm or above; these results confirm the necessity of the EHD lubrication theory.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Technical Paper

Flow Visualization and Measurement of Torque Converter Stator Blades Using a Laser Sheet Lighting Method and a Laser Doppler Velocimeter

1997-02-24
970680
A new experimental apparatus to visualize and measure the flow in the stator of a torque converter is proposed. A one-sided coaxial shaft constructed of an input shaft and an output shaft provides an open space inside the stator shaft for measurement. Through the window on the stator shaft, the flow in the stator can be directly observed. We also improved the laser sheet lighting method into the blade passage by using a mirror inside the blade. By visualizing the flow with the laser sheet lighting method, we found that the flow around the leading edge has different separation regions along the blade span. Furthermore, by using a laser doppler velocimeter, velocity vectors and turbulence intensities were measured in three stator blades of different thicknesses with the same camber line. The thickness of the stator blades affects the flow patterns.
X