Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

A Human Factors Analysis of Optical Distortion for Automotive Windshields

1994-03-01
940390
A very difficult problem exists regarding windshield shape, and that is to create a balance between aerodynamics and optical distortion. To assist in solving this problem, this study, concerning the characteristics of visual perception for the optical distortion when drivers receive visual information through a windshield, was carried out. In this study, the windshield area was divided into 4 zones from the viewpoints of the level of drivers' fixation frequency and types of objects observed. Distortion was defined as the gap angle ( distortion angle ), which crossed the lines of a grid board with and without a windshield, and distortion angles were measured on a total of 4 windshields. Four drivers indicated areas in each windshield in which they felt the area was distorted. As a result, the thresholds of optical distortion were shown as a function of the horizontal and vertical distortion angles by discriminatory analysis.
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

A Multiplexing Communication IC for Automotive Body-Electronic Control

1994-03-01
940364
In the field of automotive body electronic control such as control of door locks, power windows, and wipers, there is a growing need of multiplexing communication to reduce the amount of wire harnesses. To meet this need, we developed a multiplexing communication protocol particularly suited to the body electronic control. Based on the developed protocol, we designed a communication control IC and a simple driver/receiver circuit with a few discrete components. The bus access method of the communication is the CSMA/CD with nondestructive bit arbitration, and its bit rate is 5 kbps. Its transmission media is a single wire. The communication IC has a multiplexing control block and a serial I/O block for an interface with a host CPU. It was fabricated using CMOS technology and has a chip of 2.6mm x 3.0mm in size that contains about 5,000 transistors. The driver/receiver circuit consists of one transistor, one capacitor and several resistors.
Technical Paper

A New Battery System for the Estima Hybrid Minivan

2002-03-04
2002-01-1090
Development of a new battery system for Toyota Estima Hybrid, the world's first minivan hybrid vehicle, has been completed. The battery pack that consists of 30 nickel metal hydride battery modules is compactly arranged under the 3rd seat in the cabin along with components such as the battery cooling blower and the ducts. This arrangement was designed in consideration of user's vehicle use, passengers' comfort and efficient battery-cooling performance.
Technical Paper

A New Proportional Collection System for Extremely Low Emission Measurement in Vehicle Exhaust

1999-05-03
1999-01-1460
A new proportional collection system for extremely low tailpipe emission measurement in transient conditions has been developed. The new system can continuously sample a minute flow of exhaust gas, at a rate that is proportional to the engine exhaust rate. A zero grade gas dilution technique is utilized to prevent the influence of pollutants in atmospheric air that are the same concentration level as those in the exhaust gas. The system has accuracy within ±5%. For the direct exhaust gas flow meter, a pitot tube type flow meter is utilized as it is simple, heat resistant, sufficiently accurate and has low flow-resistance characteristic. For the collection and dilution controllers, two mass flow controllers (MFC) were adopted. The MFCs' output can be adversely influenced by variation of the specific heat of the sample gas, resulting in flow reporting error.
Technical Paper

A Newly Developed Intelligent Variable Valve Timing System - Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine

1996-02-01
960579
To meet the requirements for higher horsepower and torque as well as lower fuel consumption and emissions, we have developed a new “Intelligent Variable Valve Timing (VV-i)” system. It gives continuously variable intake cam phasing by up to 60 degrees crank angle (CA) . This system not only increases WOT output by optimizing intake valve closing timing but also reduces fuel consumption and NOx/ HC emissions under part load by increasing intake and exhaust valve overlap on 4 stroke Spark Ignited engines. VVT-i has been applied to optimize a new 3-liter inline 6 engine for higher torque and at the same time better fuel economy with continuous and wide-range cam phasing.
Technical Paper

A Solid Particle Number Measurement System Including Nanoparticles Smaller than 23 Nanometers

2014-04-01
2014-01-1604
The particle number (PN) emission regulation has been implemented since 2011 in Europe. PN measurement procedure defined in ECE regulation No. 83 requires detecting only solid particles by eliminating volatile particles, the concentrations of which are highly influenced by dilution conditions, using a volatile particle remover (VPR). To measure PN concentration after the VPR, a particle number counter (PNC) which has detection threshold at a particle size of 23 nm is used, because most solid particles generated by automotive engines are considered to be larger than 23 nm. On the other hand, several studies have reported the existence of solid and volatile particles smaller than 23 nm in engine exhaust. This paper describes investigation into a measurement method for ultrafine PNCs with thresholds of below 23 nm and evaluation of the VPR performance for the particles in this size range. The detection efficiency of an ultrafine PNC was verified by following the ECE regulation procedure.
Technical Paper

A Study of Soot Formation Processes in a Dual Fueled Compression Ignition Engine

1992-10-01
922304
The characteristics of exhausted smoke of a methanol DI diesel engine which is ignited by diesel fuel are investigated to clarify the soot formation process. At this engine, very little smoke is exhausted when diesel fuel is kept below a certain amount, so soot and smoke emitting characteristics are studied under the various diesel fuel amounts. By analyzing microstructure of soot, it is found that the soot emitted from the methanol diesel engine is composed of inner core and outer shell, similar to that of the conventional diesel engines. From more detailed qualitative analysis, the calcium percentage from the lubricating oil in outer shell is much higher than that of the conventional diesel engines. In consideration of soot characteristics, spray structure and combustion characteristics, the soot formation process of the methanol diesel engine was clarified.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Technical Paper

Aerodynamic Effects of an Overtaking Articulated Heavy Goods Vehicle on Car-Trailer-An Analysis to Improve Controllability

1987-10-01
871919
It is well known and a common experience among drivers that controllability and stability of a car-trailer combination is affected when an articulated Heavy Goods Vehicle overtakes. In this paper, aerodynamic effects to a car-trailer combination when it is overtaken by an articulated HGV, have been analyzed experimentally using 1/20 scale models in wind tunnel, and a method to suppress this phenomenon has been investigated. The dynamic behaivor of a car-trailer combination is simulated by a simple mathematical model. The result shows that a car-trailer combination can be stable following the addittion of aerodynamic devices to each side of the vehicle. This simulated result is verified by the on-read test.
Technical Paper

Alert Method for Rear Cross Traffic Alert System in North America

2013-04-08
2013-01-0732
In recent years, a number of different Blind Spot Monitor (BSM) systems have become more and more popular in North American automotive market. The BSM system advises the driver of vehicles travelling in adjacent lanes when these vehicles are also in the driver's outside rearview mirror blind spots. Similarly, when the vehicle is backing up from a parking spot, cross-traffic vehicles can be in the driver's outside mirror blind spots. In this situation, the Rear Cross Traffic Alert (RCTA) system alerts the driver when the driver shifts the vehicle in the reverse gear and there are approaching cross-traffic vehicles. The benefits of RCTA system was presented by [1]. The RCTA alert studied in this paper is given by playing an audible sound and by flashing the outside mirror indicators. The RCTA and BSM systems share the same vehicle sensors and most of their vehicle components.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

An Experimental Set Up Development for Brake Squeal Basic Research

2013-09-30
2013-01-2032
The vehicle requires high brake performance and mass reduction of disc brake for vehicle fuel economy. Then disc brake will be designed by downsizing of disc and high friction coefficient pad materials. It is well known that disc brake squeal is frequently caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes the development of experimental set up for disc brake squeal basic research. First, the equation of motion in low-frequency disc brake squeal around 2 kHz is derived.
Technical Paper

An Integration Approach on Powertrain Control System

1989-02-01
890762
Engine control systems were the precursor of scale automotive electronics systems using microcomputers. Toyota Motor Corporation introduced high - level, total control of the power train by applying system integration through introducing a multi - CPU system to the 1988 MY Toyota Camry. Integration in the ECU has been promoted to parallel with system integration. By adopting single - chip microcomputers, monolithic ICs, and hybrid ICs all designed and developed for car electronics, and semiconductor barometric pressure sensors for car electron into ECU's. etc. ever - expandable functions can be provided in a smaller and more lightweight ECU package with higher reliability.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
Journal Article

Analysis of Driver Kinematics and Lower Thoracic Spine Injury in World Endurance Championship Race Cars during Frontal Impacts

2017-03-28
2017-01-1432
This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
Technical Paper

Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine

2003-03-03
2003-01-0060
In the direct injection spark ignition gasoline engine (D-4), thin fan-shaped high-dispersion, high-penetration and high-atomization spray formed by the slit nozzle generates a stratified mixture cloud without depending on a strong intake air motion, subsequently realizing stable stratified charge combustion. To improve fuel economy further in actual traffic, the region of stratified charge combustion in torque-engine speed map must be expanded by improving spray characteristics. Since the fuel flow inside the nozzle has a large effect on the spray characteristics, it was clarified this effect by visual analysis of the fuel flow inside the nozzle using an enlarged acrylic slit nozzle of 10 magnifications. Consequently, it was found that vortices are generated frequently within a sac even in the case of steady state conditions. The effect on the spray characteristics is corresponding to the vortex scale.
X