Refine Your Search




Search Results

Technical Paper

A Driver-Side Airbag System Using a Mechanical Firing Microminiature Sensor

By developing a mechanical-firing sensor using rotational inertia effect, we have completed miniaturization of the sensor and have developed a new-type mechanical-firing airbag system. This airbag system has been confirmed to have superior occupant protection performance after conducting a variety of vehicle crash tests and sled tests.
Technical Paper

A Human Factors Analysis of Optical Distortion for Automotive Windshields

A very difficult problem exists regarding windshield shape, and that is to create a balance between aerodynamics and optical distortion. To assist in solving this problem, this study, concerning the characteristics of visual perception for the optical distortion when drivers receive visual information through a windshield, was carried out. In this study, the windshield area was divided into 4 zones from the viewpoints of the level of drivers' fixation frequency and types of objects observed. Distortion was defined as the gap angle ( distortion angle ), which crossed the lines of a grid board with and without a windshield, and distortion angles were measured on a total of 4 windshields. Four drivers indicated areas in each windshield in which they felt the area was distorted. As a result, the thresholds of optical distortion were shown as a function of the horizontal and vertical distortion angles by discriminatory analysis.
Technical Paper

A Low-Speed In-Vehicle Network for Body Electronics

The authors developed a low-speed in-vehicle network for the body control system on passenger cars, where the most remarkable effects to reduce the number of wire harnesses could be expected. First, the authors analyzed the body control system to clarify the specifications required to build a low-speed in-vehicle network. Then the authors worked out optimum communication protocol, placing emphasis on cost reduction which is the key to expanding the applications of the low-speed in-vehicle network over wider fields. The low-speed in-vehicle network was evaluated for its performance through simulation and on-vehicle tests, and proved the practical validity of the concept. It was also verified that introducing the low-speed in-vehicle network has a satisfactory effect to reduce the number of wire harnesses.
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

A Multiplexing Communication IC for Automotive Body-Electronic Control

In the field of automotive body electronic control such as control of door locks, power windows, and wipers, there is a growing need of multiplexing communication to reduce the amount of wire harnesses. To meet this need, we developed a multiplexing communication protocol particularly suited to the body electronic control. Based on the developed protocol, we designed a communication control IC and a simple driver/receiver circuit with a few discrete components. The bus access method of the communication is the CSMA/CD with nondestructive bit arbitration, and its bit rate is 5 kbps. Its transmission media is a single wire. The communication IC has a multiplexing control block and a serial I/O block for an interface with a host CPU. It was fabricated using CMOS technology and has a chip of 2.6mm x 3.0mm in size that contains about 5,000 transistors. The driver/receiver circuit consists of one transistor, one capacitor and several resistors.
Technical Paper

A New 4-Bit Microcomputer with Highly Reliable Architecture for Peripheral Circuits of ECU

Electronic Control Units (ECUs) for automobiles are usually composed of a main single-chip microcomputer and peripheral circuits with some standard and/or custom ICs. The peripheral circuits vary with the kinds of control or models of automobiles. When the peripheral circuits are replaced with a single-chip microcomputer, the ECU becomes compact and low in cost. This is because the ECU is constructed with only two LSIs and can be used for various kinds of control and various models of automobiles only by changing the program of the microcomputer. The microcomputer, however, requires many I/O functions and high reliability. We have developed a new 4-bit microcomputer suitable for these requirements. The new microcomputer has two remarkable features. One is powerful I/O functions such as high speed I/O, serial I/O, parallel I/O, analog I/O, and default output that is generated in place of the calculated output by the main CPU when it fails.
Technical Paper

A New Battery System for the Estima Hybrid Minivan

Development of a new battery system for Toyota Estima Hybrid, the world's first minivan hybrid vehicle, has been completed. The battery pack that consists of 30 nickel metal hydride battery modules is compactly arranged under the 3rd seat in the cabin along with components such as the battery cooling blower and the ducts. This arrangement was designed in consideration of user's vehicle use, passengers' comfort and efficient battery-cooling performance.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
Technical Paper

A Newly Developed Intelligent Variable Valve Timing System - Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine

To meet the requirements for higher horsepower and torque as well as lower fuel consumption and emissions, we have developed a new “Intelligent Variable Valve Timing (VV-i)” system. It gives continuously variable intake cam phasing by up to 60 degrees crank angle (CA) . This system not only increases WOT output by optimizing intake valve closing timing but also reduces fuel consumption and NOx/ HC emissions under part load by increasing intake and exhaust valve overlap on 4 stroke Spark Ignited engines. VVT-i has been applied to optimize a new 3-liter inline 6 engine for higher torque and at the same time better fuel economy with continuous and wide-range cam phasing.
Technical Paper

A Simulation Test Method for Deterioration of FKM Compounds Engine Crankshaft Oil Seals

A laboratory scale simulation test method was developed to evaluate deterioration of radial lip seals of fluoroelastomer (FKM) compounds for engine crankshafts. The investigation of the collected radial lip seals of FKM compounds from the field with service up to 450,000km indicated that the only symptom of deterioration is a decrease of lip interference. This deterioration was not duplicated under conventional test conditions using an oil seal test machine because sludge build up at the seal lip caused oil leakage. However, revised test conditions make it possible to duplicate the deterioration experienced in the field. An immersion test using a radial lip seal assembled with the mating shaft was newly developed. This test method was found to be useful to evaluate deterioration of radial lip seals using FKM compounds. Oil additives affect the deterioration of lip seal materials significantly. Therefore, immersion tests of four different oils were conducted to evaluate this effect.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

A Study of Chassis Dynamometers for 4 Wheel Drive Vehicles - Influence of the Front-Rear Rollers Synchronizing System on the Power Distribution

Recently,four-wheel drive vehicle (hereinafter abbreviated as 4WD vehicle) chassis dynamometer has been developed and in the course of practical use for many kinds of test. The 4WD chassis dynamometer technology, however, involves many new requirements and advanced techniques which were not required for conventional chassis dynamometers. This study has described a generation mechanism for driving force distribution through construction of a dynamic model for the resolution of unsolved issues in composite dynamic systems of 4WD vehicle and 4WD chassis dynamometer. Additionally, we have clarified the reasons why driving force distribution on-the-road is different from that on the chassis dynamometer, and clarified that the work value of driving shaft depends upon the combination of chassis dynamometer types and 4WD vehicles types. The micro-slip theory (hereinafter abbreviated as MS theory) utilized for the analysis is the basic theory that can explain that inclinations.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

A Study of Stratified Charge Combustion Characteristics in New Concept Direct Injection SI Gasoline Engine

A new stratified charge system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle and a shell-shaped piston cavity. This system, basically classified into the wall-guided mixture preparation concept that leads air/fuel mixture to the spark plug periphery by means of spray penetration and piston cavity configuration without an extra intake air flow controlling system, obtained wide engine operating area with stratified combustion and high output performance. This report presents the characteristics of stratified mixture formation and combustion, especially the important factor for achieving stable stratified combustion in the high-speed region, which have been clarified through analytical studies.
Technical Paper

Aerodynamic Effects of an Overtaking Articulated Heavy Goods Vehicle on Car-Trailer-An Analysis to Improve Controllability

It is well known and a common experience among drivers that controllability and stability of a car-trailer combination is affected when an articulated Heavy Goods Vehicle overtakes. In this paper, aerodynamic effects to a car-trailer combination when it is overtaken by an articulated HGV, have been analyzed experimentally using 1/20 scale models in wind tunnel, and a method to suppress this phenomenon has been investigated. The dynamic behaivor of a car-trailer combination is simulated by a simple mathematical model. The result shows that a car-trailer combination can be stable following the addittion of aerodynamic devices to each side of the vehicle. This simulated result is verified by the on-read test.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

An Evaluation of Multiplexing System for Automotive Distributed Control

On board multiplexing communication system is regarded as a necessary technology for the future of electronic system in automobiles. Many companies are developing multiplexing systems and the ISO and SAE are active in establishing standards for communication protocols. The proposed communication protocol specifications have different specifications. Consequently, no compatible evaluation standards existed, and it was difficult to compare one protocol to another. Therefore, to assist the standardization activities of the IS0 and SAE, we have developed an evaluation method for distributed multiplexed communication systems and evaluated each of the proposed protocols using this method. These evaluations were performed from the point of view of the future users of these systems. In this paper we present the results of the experiments on distributed multiplexed communication systems each of which consists of communication IC and the proposed physical layer.
Technical Paper

An Integration Approach on Powertrain Control System

Engine control systems were the precursor of scale automotive electronics systems using microcomputers. Toyota Motor Corporation introduced high - level, total control of the power train by applying system integration through introducing a multi - CPU system to the 1988 MY Toyota Camry. Integration in the ECU has been promoted to parallel with system integration. By adopting single - chip microcomputers, monolithic ICs, and hybrid ICs all designed and developed for car electronics, and semiconductor barometric pressure sensors for car electron into ECU's. etc. ever - expandable functions can be provided in a smaller and more lightweight ECU package with higher reliability.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.