Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

1995-02-01
950044
In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
Technical Paper

A Newly Developed Intelligent Variable Valve Timing System - Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine

1996-02-01
960579
To meet the requirements for higher horsepower and torque as well as lower fuel consumption and emissions, we have developed a new “Intelligent Variable Valve Timing (VV-i)” system. It gives continuously variable intake cam phasing by up to 60 degrees crank angle (CA) . This system not only increases WOT output by optimizing intake valve closing timing but also reduces fuel consumption and NOx/ HC emissions under part load by increasing intake and exhaust valve overlap on 4 stroke Spark Ignited engines. VVT-i has been applied to optimize a new 3-liter inline 6 engine for higher torque and at the same time better fuel economy with continuous and wide-range cam phasing.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Technical Paper

Effects of Squish Area Shape on Knocking in a Four-Valve Spark Ignition Engine

1999-05-03
1999-01-1494
Squish flow control is well known as a key technology for improving knock limit in spark ignition engines. However, to acquire a sufficient squish area in a four-valve engine is difficult. In order to achieve a maximum effect of knock suppression with a minimum squish area, we have developed, what we call, a Slant Squish Combustion Chamber for new engines. A slant squish compared with a conventional squish produces an effective reverse squish flow in the early expansion stroke, resulting in higher flow velocity and turbulence. Furthermore, flame propagation to squish area and end gas is accelerated. These improvements are considered to suppress the knock phenomenon. Consequently, with a slant squish, a high compression ratio, to achieve low fuel consumption and high engine performance is realized.
Journal Article

High Concentration Ethanol Effect on SI Engine Emission

2010-04-12
2010-01-1268
From the energy security and CO2 reduction point of view, much attention has been paid to the usage of bio-fuel. Recently, highly concentrated ethanol is used in some areas (“E85”; 85% ethanol and 15% gasoline in North America and Sweden, and “ethanol”; 93% ethanol and 7% water in Brazil). In these regions, Flexible Fuel Vehicles FFVs are being introduced that are capable of using fuels with a wide range of ethanol concentrations. Advantages of highly concentrated ethanol in internal combustion engine applications are higher thermal efficiency obtained due to higher octane number, and a reduction of nitrogen oxides due to lower combustion temperatures On the other hand, the latent heat of vaporization for ethanol is greater than gasoline, causing poor cold startability and high NMOG emissions. This paper examines the effect of highly concentrated ethanol on exhaust emissions at cold start in a SI- engine.
Technical Paper

Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines (Part 2)

2013-10-14
2013-01-2569
As one of spark ignition (SI) engine solutions to improve fuel economy while maintaining drivability, concept of combing turbocharging and direct injection (DI) fuel injection system with engine down-sizing has increased its application in the market. Abnormal combustion phenomena referred to as Low Speed Pre-Ignition (LSPI) has been recognized as potential restriction to improve low speed engine torque that contributes fuel economy improvement. As reported in the part 1 [1], the study showed that engine oil composition had significant influence on the frequency of LSPI in both preventive and contributory effects. Further investigation was conducted to evaluate engine oil formulation variables and other factors that may have influences on the LSPI, such as engine oil degradation. Engine test that consisted of 2 phases was designed in order to confirm the correlation between LSPI frequency and engine oil degradation.
Technical Paper

Model Based Air Fuel Ratio Control for Reducing Exhaust Gas Emissions

1995-02-01
950075
In order to satisfy future demands of low exhaust emission vehicles (LEV), a new fuel injection control system has been developed for SI engines with three-way catalytic converters. An universal exhaust gas oxygen sensor (UEGO) is mounted on the exhaust manifold upstream of the catalytic converter to rapidly feedback the UEGO output signal and a heated exhaust gas oxygen sensor (HEGO) is mounted on the outlet of the converter to achieve an exact air fuel ratio control at stoichiometry. The control law is derived from mathematical models of dynamic air flow, fuel flow and exhaust oxygen sensors (HEGO and UEGO). Experimental results on FTP (Federal Test Procedure) exhaust emissions show a dramatic reduction of HC, CO and NOx emissions and a possibility of practical low emission vehicles at low cost.
Technical Paper

Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts

2014-10-13
2014-01-2574
This paper focuses on the fuel contribution to crankcase engine oil degradation in gasoline fueled engines in view of insoluble formation. The polymerization of degraded fuel is responsible for the formation of insoluble which is considered as a possible cause of low temperature sludge in severe vehicle operating conditions. The main objective of the study is to understand the mechanism of formation of partially oxidized compounds from fuel during the combustion process, before their accumulation in the crankcase oil. A numerical method has been established to calculate the formation of partially oxidized compounds in spark ignition engines directly, by using 3D CFD. To further enable the possibility of running a large number of simulations with a realistic turn-around time, a coupled approach of 3D CFD (with simplified chemical mechanism) and 0D Kinetics (with full chemical mechanism) is proposed here.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
Technical Paper

Research on Improving Thermal Efficiency through Variable Super-High Expansion Ratio Cycle

2010-04-12
2010-01-0174
The compression ratio and expansion ratio are fundamental parameters that determine the thermal efficiency of an SI engine, and the potential of setting these ratios to arbitrary values was studied as a way of improving engine efficiency. First, the efficiency resulting from different compression and expansion ratios was calculated from a theoretical formula. As a result, it was verified that a 20% improvement in thermal efficiency could be expected by adopting a super-high expansion ratio of 20 or higher, which is an extremely large value for an SI engine, while keeping the compression ratio within a range that can ensure appropriate combustion. Subsequently, this research calculated the possibility of improving engine efficiency under a condition that constrains the swept volume to a constant value in consideration of practicability.
X