Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Analysis of Sintered Silicon Nitride Grinding Damage

1993-03-01
930163
Sintered silicon nitride, particularly in structural ceramics, has superior properties such as low weight, heat resistance, wear resistance, etc. It is already being applied to automobile engine parts such as the swirl chamber and the turbine rotor. In recent years, the strength of silicon nitride has shown to be above 1000MPa. This has been achieved through advances in manufacturing technology such as materials powder, forming, sintering and so on. But the silicon nitride is easily damaged during grinding because it has less fracture toughness than metal. Consequently, the inherent strength of the material is not demonstrated in the actual products presently produced. It is assumed that the main cause of strength reduction is microcrack. In ordinary grinding methods, the length of microcrack has been estimated at approximately twenty micrometers by fracture mechanics analysis.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Binding Force Control of Uni-Pressure Cushion in Automobile Panel Stamping

1995-02-01
950916
Recently, single action draw with cushion replaces draw with double action presses. In the single action draw, binding fluctuation problem occurs by its structure. We applied an NC cushion to prevent the problem. We compared the cushion force wave with and without an NC cushion. The NC cushion showed effective damping. We studied the binding force control of a side member outer panel. The panel didn't have the formable range of binding. This means the lowest binding force to avoid wrinkling, still had crack problems. We introduce four patterns of binding force control with the NC cushion. As a result, we found the suitable pattern to suppress the surface distortion. Controlling the binding force shows effectiveness as a means of suppressing surface distortions.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Development of Painted Super Olefin Bumper Recycling Technology

1996-02-01
960283
In automotive plastic parts, bumpers are rather bigger parts and easy to be detached. And there is growing need to develop bumpers recycling technology. Now we developed the recycling technology for waste painted Super Olefin Polymer (SOP) bumpers from car dealers in production. This technology consists of discriminating from the repair in market by dyeing, and of melting SOP resin and hydrolysis of the paint film which are carried out simultaneously in a twin-screw extruder Reactive Processing System.
Technical Paper

Development of Super Olefin Bumper for Automobiles

1992-02-01
920525
The EMT (Elastomer Modified Thermoplastics) currently used in passenger car bumper fascia are limited in retaining low CLTE (Coefficient of Linear Thermal Expansion) and impact resistance, although they are highly rigid, which allows a reduction in weight, and also have high flowability during injection molding. We have developed a new bumper material called “Super Olefin Polymer” using a unique theory based upon a reversal of the current concept. The current polymer design concept of the EMT material is to compound and disperse the EPR (Ethylene Propylene Rubber) into the resin matrix such as polypropylene. We reversed the domain and the matrix, and treated the resin phase as the filler and the elastomer phase as the matrix.
Technical Paper

Development of alloy cast iron for press die

2000-06-12
2000-05-0194
This paper describes the development of alloy cast iron that can be used for the cutting edges of the trimming die of a press die. Usually, a block of tool steel or steel casting is inserted at the cutting edge of the trimming die of a press die. However, we unified the structure part and the cutting-edge part of a press die with alloy cast iron. As it can''t bear as the cutting edge in this state, the cutting edge is processed by flame-hardening. After the flame- hardening, we developed the alloy cast iron so that enough hardness may be obtained by natural air cooling. Thereby, the machining of the installation seat of the cutting edge decreased and the expense of dies has been reduced.
Technical Paper

Finite Element Simulation of Stamping a Laser-Welded Blank

1993-03-01
930522
In order to achieve higher assembly accuracy for automotive body, increased body rigidity, and decreased stamping and assembly costs in car body manufacturing, a new method of sheet metal stamping has been developed, in which several blanks of different strength and thickness are integrated using CO2 laser-welding. The stamping formability of the laser-welded blank is limited compared with that of the conventional single blank. It is very difficult to predict the exact decrease in formability for different positions of the weld line and for different matching of materials. Because experimental estimations were indispensable for stamping die designers to evaluate formability at the stage of planning dies, many man-hours were spent conducting actual experiments.
Technical Paper

Future Automotive Technical Trends

1988-03-01
871155
This paper provides an overview of the automotive technology and its future trends mainly focussing on Japan. The future automotive technology will basically be on the projection of current technology, although it is expected more progress to be made in advanced and precision control systems. The application of electronics and development of new materials will play a very important role in this area.
Technical Paper

New Plastic Coloring and Forming System

1991-02-01
910363
This paper describes a new plastic coloring and forming system. The system greatly reduces the time and amount of raw materials necessary for color changes, and eliminates the need for manual cleaning during a color change. This system is well-suited for small-lot production with frequent color changes, as well as for automated production systems. The system is being used by auto parts makers, and is practical in a variety of other fields involved with the coloring and forming of plastics.
Technical Paper

Nylon 6-Clay Hybrid - Synthesis, Properties and Application to Automotive Timing Belt Cover

1991-02-01
910584
ϵ-caprolactam was polymerized in the interlayer space of montmorillonite, the clay mineral yielding a nylon-clay hybrid (NCH). X-ray and TEM measurements revealed that each template of the silicate, which was 1 nm thick, was dispersed in the nylon 6 matrix, and that the interlayer distance of clay increased continuously from 1.2 nm for the unintercalated material to 21.4 nm for the intercalated material. Thus, NCH is a polymer-based molecular composite or a nano-composite. NCH contains 1-15 vol% of monolayer clay. Injection-molded NCH showed excellent mechanical properties compared with nylon 6 in terms of tensile strength, tensile modulus and heat resistance. The tensile modulus of NCH was twice that of Nylon 6, and the heat distortion temperature increased from 65°C for nylon 6 to 145°C for the NCH containing only 1.6 vol% of a clay mineral. It was found that such excellent properties of an NCH system was due to the strong ionic interaction between nylon 6 and the silicate layer.
Technical Paper

Overview and Future Plan of Automotive Electronic Systems

1986-10-20
861060
This paper provides an overview of automotive electronic systems put into products over the past decade, and describes automotive electronics which have been demonstrated in experimental cars. In addition, future electronic systems found to be promising for the practical use in coming years and the direction of development of electronics are also discussed, as an extention of the overview mentioned above.
Technical Paper

Recycling Technology of Surface Material for Interior Trims

2000-03-06
2000-01-0741
Two-layered surface materials composed of a thermoplastic olefin elastomer (TPO) skin and a cross-linked polypropylene (PP)foam are increasingly replacing the conventional PVC skin/PVC foam for interior trims. In the past, recycled material obtained by melt-blending TPO skin and PP foam could not be re-used for TPO skin because of its appearance. A new recycling technology using the reaction biaxial extruder with a reaction agent can decompose the network structure of PP foam. As a result, PP foam is dispersed into TPO uniformly and the recycled material has properties and an appearance similar to virgin TPO. These new properties may allow the application of the recycled material as a surface material.
Technical Paper

Silicon Nitride Swirl Lower-Chamber for High Power Turbocharged Diesel Engines

1985-02-01
850523
This paper describes application of sintered silicon nitride to the swirl lower-chamber in order to improve performance of turbocharged diesel engines. Various stress analyses by finite element method and stress measurements have been applied to determine the design specifications for the component, which compromise brittleness of ceramic materials. Material development was conducted to evaluate strength, fracture toughness, and thermal properties for the sintered bodies. Ceramic injection molding has been employed to fabricate components with large quantities in the present work. Quality assurance for the components can be made by reliability evaluation methods as well as non-destructive and stress loading inspections. It is found that the engine performance with ceramic component has been increased in the power out put of 9PS as compared to that of conventional engines.
Technical Paper

Study on Combustion Chamber Deposit Formation Mechanism -Influence of Fuel Components and Gasoline Detergents-

1997-05-01
971722
The combustion chamber deposit (CCD) forming tendency of gasoline components and detergents were investigated with laboratory tests ad engine dynamometer tests. In the dynamometer tests, the driving conditions under which fuels and detergents influence CCD formation were specified, and the effects of different gasoline components and detergent blends on CCD formation were examined. In the laboratory tests, the CCD forming process was investigated thoroughly [10]. The CCD forming tendency of aromatic compounds in gasoline were dependent not only on physical properties such as molecular weight, but also chemical structure (number or position of the alkyl substituents of aromatic molecules). As for oxygenates, engine dynamometer tests with MTBE blended gasoline yielded less CCD than the test without MTBE. The CCD forming tendency of detergents correlated with the thermal decompositon tendency of the detergent package and the concentration of the main agents.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

Toyota's U340E Four-speed Automatic Transaxle

2000-03-06
2000-01-1147
TOYOTA has designed a new family of automatic transaxles named the “Super ECT”. These are the next generation of automatic transaxles (AT), for FWD passenger cars. The aim of this development was compactness, lightness, and improvements in fuel economy and shift quality. There are several kinds of transaxles included in this group to match each of the FWD passenger cars and engines. The “U340E,” a four-speed automatic transaxle, has been developed as one member of this family. This is one of the most compact and light AT in its class, and has greatly contributed to the fuel economy of vehicles. This paper will give an overview of the “Super ECT” and the major features and performance of the U340E.
X