Refine Your Search

Topic

Author

Search Results

Technical Paper

A New 4.5 Liter In-Line 6 Cylinder Engine, 1FZ-FE for the Toyota Land Cruiser

1993-03-01
930876
A new 4.5 liter in-line 6 cylinder engine,1 FZ-FE has been developed for the Toyota Land Cruiser. To obtain high power, fuel efficient engine, we adopted the most advanced Toyota technologies, such as Toyota original 4 Valve DOHC system with scissors gear between camshafts, compact combustion chamber with smooth inlet and outlet system, KCS and so on. The engine produces 212 HP at 4600 rpm and 275 ft-lbs at 3200 rpm. Aluminum cylinder head,short skirt cylinder block stiffened with aluminum oil pan give the engine light weight and make it rigid enough to have low vibration and quietness. And we also designed every engine part appropriately so as to make the engine durable enough in severe operating condition of off-road vehicle.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

1995-02-01
950044
In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
Technical Paper

A Newly Developed Intelligent Variable Valve Timing System - Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine

1996-02-01
960579
To meet the requirements for higher horsepower and torque as well as lower fuel consumption and emissions, we have developed a new “Intelligent Variable Valve Timing (VV-i)” system. It gives continuously variable intake cam phasing by up to 60 degrees crank angle (CA) . This system not only increases WOT output by optimizing intake valve closing timing but also reduces fuel consumption and NOx/ HC emissions under part load by increasing intake and exhaust valve overlap on 4 stroke Spark Ignited engines. VVT-i has been applied to optimize a new 3-liter inline 6 engine for higher torque and at the same time better fuel economy with continuous and wide-range cam phasing.
Technical Paper

A Solid Particle Number Measurement System Including Nanoparticles Smaller than 23 Nanometers

2014-04-01
2014-01-1604
The particle number (PN) emission regulation has been implemented since 2011 in Europe. PN measurement procedure defined in ECE regulation No. 83 requires detecting only solid particles by eliminating volatile particles, the concentrations of which are highly influenced by dilution conditions, using a volatile particle remover (VPR). To measure PN concentration after the VPR, a particle number counter (PNC) which has detection threshold at a particle size of 23 nm is used, because most solid particles generated by automotive engines are considered to be larger than 23 nm. On the other hand, several studies have reported the existence of solid and volatile particles smaller than 23 nm in engine exhaust. This paper describes investigation into a measurement method for ultrafine PNCs with thresholds of below 23 nm and evaluation of the VPR performance for the particles in this size range. The detection efficiency of an ultrafine PNC was verified by following the ECE regulation procedure.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

A Study of Soot Formation Processes in a Dual Fueled Compression Ignition Engine

1992-10-01
922304
The characteristics of exhausted smoke of a methanol DI diesel engine which is ignited by diesel fuel are investigated to clarify the soot formation process. At this engine, very little smoke is exhausted when diesel fuel is kept below a certain amount, so soot and smoke emitting characteristics are studied under the various diesel fuel amounts. By analyzing microstructure of soot, it is found that the soot emitted from the methanol diesel engine is composed of inner core and outer shell, similar to that of the conventional diesel engines. From more detailed qualitative analysis, the calcium percentage from the lubricating oil in outer shell is much higher than that of the conventional diesel engines. In consideration of soot characteristics, spray structure and combustion characteristics, the soot formation process of the methanol diesel engine was clarified.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

Combustion Improvement for Reducing Exhaust Emissions in IDI Diesel Engine

1998-02-23
980503
Means for reducing the particulate matter (PM) from swirl chamber type diesel engines were searched out, and the reducing mechanisms were examined using an optically accessible engine. The following points were clarified in this study. 1. At light load, the suppression of the initial injection rate reduces PM, because SOF is reduced by the change in ignition point and smoke is reduced by the retarded flowout of the dense soot from the swirl chamber 2. Under medium and high load conditions, the main cause of the exhaust smoke is fierce spray-wall impingement which leads to fuel adhesion on the wall and the stagnation of a rich fuel-air mixture. 3. Enlarging swirl chamber volume ratio suppresses the formation of dense soot in the swirl chamber. In the main chamber, however, the soot oxidization becomes insufficient due to the mixing effect reduced by the essentially decreased chamber depth. 4.
Technical Paper

Critical Analysis of PM Index and Other Fuel Indices: Impact of Gasoline Fuel Volatility and Chemical Composition

2018-09-10
2018-01-1741
Among the challenges for the future facing the development of gasoline engines, one of the most important is the reduction of particles emissions. This study proposes a critical and objective evaluation of the influence of fuel characteristics on gasoline particles emission through the use of Fuel Particle Indices. For this, a selected fuel matrix composed of 22 fuels was built presenting different volatility and chemical composition (content in total aromatics, heavy cuts and ethanol). To represent the fuel sooting tendency, seven Fuel Particle Indices were selected based on a literature review, namely, Particulate Matter Index (PMI), Particulate Number index (PNI), Threshold Sooting index (TSI), Smoke point (SP), Oxygen Extended Sooting Index (OESI), Simplified index 1 and 2 (sPMI 1, sPMI 2). These indices were computed on the fuel matrix and compared on the basis of three main axes. First, the sensitivity to fuel variation.
Technical Paper

Development and Practicing of Automatic Fluorescent Magnetic Particles Inspection

1993-03-01
930576
The fluorescent magnetic particle inspection is widely used as a visual inspection method for checking cracks generated in hardening and grinding of induction-hardened parts. However, automation of this inspection process has strongly been demanded, due to poor environmental conditions and production line speed. To satisfy such a demand, we have developed a method for picking up images of automotive parts with higher S/N ratio and an original algorithm for image processing which helps measure cracks accurately without being affected by the illuminance and magnetic particle solution concentration. Then we selected the front axle shaft as the object to study practical use and have solved various technical problems in actual use, thereby succeeding in actual application to our production lines.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

Development of Bearing with Composite Overlay for High-Performance Engines

1996-02-01
960988
Recently, there has been a tendency of high power and high speed in automotive engines. In addition they have been also required high reliability. And engine bearings have been required to be advanced in wear resistance as well as seizure resistance. Therefore, copper-lead alloy bearings with overlay, which have better seizure resistance, have been widely used for high speed engines up to the present. But it becomes very important for them to advance the overlay wear resistance. In this paper, the composite overlay is mainly researched to improve wear resistance regarding kind of hard particles and their amounts in the overlay.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Technical Paper

Development of DISI Engine Utilizing a Fan-Shaped Spray Jet

2013-04-08
2013-01-0260
A new combustion concept for DISI gasoline engine was developed to achieve superior performances of high power and low environmental load. It realizes a high specific power and a good lean combustion performance simultaneously by utilizing a DI spray jet effectively to accelerate the in-cylinder tumble flow. Injection direction and configuration of the DI spray was optimized for intensification of the in-cylinder flow and high mixture homogeneity, a thin fan-shaped spray generated by a slit nozzle was adopted. As a result, combustion was accelerated by increase of in-cylinder turbulence intensity, and homogeneity of air-fuel mixture was improved. In addition, in-cylinder fuel wall wetting, which causes emission of particulate matter (PM) and oil dilution, was drastically reduced by improvement of the fan-shaped spray.
Technical Paper

Development of Engine Valve Seats Directly Deposited onto Aluminum Cylinder Head by Laser Cladding Process

1992-02-01
920571
A new technologies for manufacturing of engine valve seats have been developed. This process, different from the conventional method that valve seats made of sintered alloy were press-fit into the cylinder head, is directly formed valve seats onto cylinder head by using the laser cladding technique. In order to develope the cylinder head with laser cladding valve seats, the laser cladding technology by which copper based alloy is deposited onto aluminum alloy with little dilution and stable bead has been established. And the unique cladding alloy, which is two phases in the liquid stage and in which iron or molybdenum rich hard particles are dispersed in the solid state, has been developed. Based on this technique, the practical process has been successfully completed.
Technical Paper

Development of High Accuracy NOx Sensor

2019-04-02
2019-01-0749
This paper presents an improvement in the accuracy of NOx sensors at high NOx concentration regions by optimizing the manufacturing process, sensor electrode materials and structure, in order to suppress the deterioration mechanism of sensor electrodes. Though NOx sensors generally consist of Pt/Au alloy based oxygen pump electrodes and Pt/Rh alloy based sensor electrodes, detailed experimental analysis of aged NOx sensors showed changes in the surface composition and morphology of the sensor electrode. The surface of the sensor electrode was covered with Au, which is not originally contained in the electrode, resulting in a diminished active site for NOx detection on the sensor electrode and a decrease in sensor output. Theoretical analysis using CAE with molecular dynamics supported that Au tends to be concentrated on the surface of the sensor electrode.
Technical Paper

Development of High-Strength Aluminum Piston Material

2010-04-12
2010-01-0220
Mass reduction of parts is growing in importance as a means for reducing CO2 emissions from vehicles.The aim of the present research was to contribute to further mass reduction of pistons by developing a new aluminum casting material with highest level of fatigue strength. This goal was achieved using a development concept of creating a homogeneous structure in which Ti was added to create a fine structure and appropriate quantities of Fe and Mn were added to form a compound that is stable at high temperatures. Stand-alone tests of prototype pistons fabricated using the developed material show that the material is 14% stronger than the conventional material, thereby enabling increases in power and mass reduction.
X