Refine Your Search




Search Results

Technical Paper

A Java Implementation of Future Automotive Systems Technology Simulator (FASTSim) Fuel Economy Simulation Code Modules

Future Automotive Systems Technology Simulator (FASTSim) is a free and open-source tool developed by National Renewable Energy Lab (NREL). Among the attractive capabilities of the FASTSim is that it can perform computationally efficient fuel economy simulations of automotive vehicles with reasonable accuracy for standard or arbitrary drive cycles. The modeling capability includes vehicles with various types of powertrains such as: conventional vehicles (CVs), hybrid-electric vehicles (HEVs), plugin hybrid electric vehicles (PHEVs) and battery-only electric vehicles (BEVs). The public version of FASTSim available from NREL is implemented in Excel, which achieves the goal of good accessibility to a broad audience, but has some limitations, including: i) bottleneck in computations when importing arbitrary drive cycles, ii) slower computations in general than other scripting or programming languages, and iii) less portable to integration with other applications and/or other platforms.
Technical Paper

A New V-8 Engine for the LEXUS LS 400

A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Technical Paper

A Study of Evaluating the Real-time Property for Engine Control Software

Recently, the role of ECU(Electronic Control Unit) on vehicles has been becoming more important year by year in order to meet the requirements for safety and the environmental matters. Particularly, the ECU of Engine Management Systems has been becoming indispensable in order to realize high performance, low fuel consumption and low exhaust emission. Therefore, the size of software has also been increasing, and been becoming more complex and complicated. As the ECU software size becomes large and complex, the verification and validation of the software by using the current development method has been becoming more difficult. Especially it has been becoming more difficult to validate the Real-time property of the software. The Real-time property means whether the execution of the software is in time for the deadline which is decided on the software design.
Technical Paper

A Study of Greenhouse Gas Emissions Reduction Opportunity in Light-Duty Vehicles by Analyzing Real Driving Patterns

Electric drive vehicles (EDV) have the potential to greatly reduce greenhouse gas (GHG) emissions and thus, there are many policies in place to encourage the purchase and use of gasoline-hybrid, battery, plug-in hybrid, and fuel cell electric vehicles. But not all vehicles are the same, and households use vehicles in very different ways. What if policies took these differences into consideration with the goal of further reducing GHG emissions? This paper attempts to answer two questions: i) are there certain households that, by switching from a conventional vehicle to an EDV, would result in a comparatively large GHG reduction (as compared to other households making that switch), and, if so, ii) how large is the difference in GHG reductions? The paper considers over 65,000 actual GPS trip traces (generated by one-second interval recording of the speed of approximately 2,900 vehicles) collected by the 2013 California Household Travel Survey (CHTS).
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Advanced Thermal Comfort in the Passenger Vehicle Compartment

The demand for thermal comfort in the passenger vehicle compartment is infinite. As a result, technologically sophisticated options and features continue to be upgraded both in the hardware and software sectors. The personalization of comfort became a priority and led to improvements in automatic room temperature control techniques. Furthermore, the demand is rising not only for thermal comfort but also for cabin air quality improvement. Also, contributions to improve mileage and fuel consumption are a new request at the present time. This paper introduces the latest thermal comfort technologies in temperature and airflow controls as well as air quality improvement features. In addition, this paper introduces fuel consumption reduction technology employed by the A/C configuration of the TOYOTA HYBRID SYSTEM.
Journal Article

An Investigation of High Load (Compression Ignition) Operation of the “Naphtha Engine” - a Combustion Strategy for Low Well-to-Wheel CO2 Emissions

A computational and experimental study has been carried out to assess the high load efficiency and emissions potential of a combustion system designed to operate on low octane gasoline (or naphtha). The “naphtha engine” concept utilizes spark ignition at low load, HCCI at intermediate load, and compression ignition at high load; this paper focuses on high load (compression ignition) operation. Experiments were carried out in a single cylinder diesel engine with compression ratio of 16 and a common rail injector/fuel delivery system. Three fuels were examined: a light naphtha (RON∼59, CN∼34), heavy naphtha (RON∼66, CN∼31), and heavy naphtha additized with cetane improver (CN∼40). With single fuel injection near top dead center (TDC) (diesel-like combustion), excessive combustion noise is generated as the load increases. This noise limits the maximum power, in agreement with the CFD predictions. The noise-limited maximum power increases somewhat with the use of single pilot injection.
Technical Paper

Analysis for Vibration Caused by Starter Shaft Resonance

It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
Technical Paper

Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion

Behavior of sprays formed by slit nozzle as well as swirl nozzles with the spray cone angle in the range of 40° ∼110 ° were studied in a constant volume N2 gas chamber. The fuels used are iso-pentane, n-heptane, benzene and gasoline. The ambient pressure and temperature were raised up to 1.0 MPa and 465 K, respectively. The injection pressure was mainly set at 8 MPa. Spray penetrates at an almost constant speed for a while after injection start and begins to decelerate at a certain point. This point was judged as breakup point, based on a momentum theory on spray motion, the observation of spray inside and the analysis of the spray front reacceleration which occurs under highly volatile condition.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Ball Behavior Analysis of Rzeppa Constant Velocity Joint

Driveshafts are composed of a transmission side joint, wheel side joint, and shaft which connect the two joints. The Rzeppa type constant velocity joint (CVJ) is usually selected as the wheel side joint of a drive shaft for front wheel drive automobiles. Due to recent needs of fuel efficiency and lighter weight for vehicles, it is necessary to reduce the joint size and improve the efficiency of a CVJ. In order to reduce the weight, solving tribology details for long life under high contact pressure is an important issue for developing a CVJ. It is difficult to understand the characteristics of a contact surface, such as relative slip velocity or spin behavior, because the outer race, inner race, cage, and balls, act complicatedly and exchange loads at many points. Meanwhile, after joint endurance tests, ball spalling marks at pole of the ball are sometimes observed.
Technical Paper

Biodiesel Stability and its Effects on Diesel Fuel Injection Equipment

The effects of biodiesel oxidation stability on diesel fuel injection equipment (FIE) behavior were investigated using newly developed test rig and methodology. On the test rig, biodiesel blend fuels were circulated through a fuel tank and a common rail injection system. Fuel injected from typical diesel injectors was returned into the fuel tank to enhance the speed of fuel degradation. The results showed that injector deposits could be reproduced on a test rig. It was observed that injector body temperature increase accelerates the degradation of fuel and therefore gives earlier FIE failure. Fuel renewal could partially restore the injection quantity after complete failure at low injection pressure, thus showing a potential cleaning effect on injector deposits when refueling a car.
Technical Paper

Coasting Technology for Real-World Fuel Economy Improvement of a Hybrid Vehicle

Automobile manufactures need to adopt new technologies to meet global CO2 (carbon dioxide) emission regulations and better fuel efficiency demands from customers. Also, the production cost should be as low as possible for an affordable vehicle. Therefore, it is advantageous for OEMs to develop fuel efficient technologies which can be controlled by software without additional hardware costs. The coasting control is a fuel efficiency improvement technology that can be implemented by the change of vehicle software only. The coasting control is a technology that reduces the driving resistance (Deceleration) when the driver releases the gas pedal. This technology leads to reducing the energy required for the vehicle to drive and results in improving the real-world fuel economy. In an internal combustion engine (ICE) vehicle, the coasting state is achieved by changing the gear to neutral, and the effect has been discussed and clarified by many previous studies.
Technical Paper

Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline

Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
Technical Paper

Combustion Analysis on Piston Cavity Shape of a Gasoline Direct Injection Engine

This paper describes the analyses to improve both stratified and homogeneous charge combustion of a gasoline direct injection engine. In this study, computational fluid dynamics (CFD) and high-speed hydrocarbon (HC) measurement were employed to observe the mixture formation process. The analysis of the combustion flame propagation was conducted by in-cylinder visualization and ion current measurement. As a result of the analyses, the following conclusions were made: 1 An oval shaped wall cavity can direct the mixture gas to the vicinity of the spark plug better than a conventional shell-shaped wall cavity. The oval shaped wall cavity can improve fuel consumption and HC emission at stratified charge combustion. 2 A shallow cavity improves the homogenization of mixture gases and wide open throttle (WOT) performance.
Journal Article

Combustion Development to Realize High Thermal Efficiency Engines

Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society, and an effective way of accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. Cooled EGR has the potential to achieve further lower fuel consumption if the EGR ratio can be increased. Fast combustion is an important and effective way for expanding the EGR ratio. The engine combustion enhancement can be categorized into measures to improve ignition characteristics and methods to promote flame propagation.
Journal Article

Combustion Improvement of Diesel Engine by Alcohol Addition - Investigation of Port Injection Method and Blended Fuel Method

Alcohol fuels that can be produced from cellulose continue to become more widely used in gasoline engines. This research investigated the application of alcohol to diesel engines with the aims of improving the combustion of diesel engines and of utilizing alternative fuels. Two methods were compared, a method in which alcohol is injected into the air intake system and a method in which alcohol is blended in advance into the diesel fuel. Alcohol is an oxygenated fuel and so the amount of soot that is emitted is small. Furthermore, blended fuels have characteristics that help promote mixture formation, which can be expected to reduce the amount of soot even more, such as a low cetane number, low viscosity, low surface tension, and a low boiling point. Ethanol has a strong moisture-absorption attribute and separates easily when mixed with diesel fuel. Therefore, 1-butanol was used since it possesses a strong hydrophobic attribute and does not separate easily.
Technical Paper

Concept and Approach of Multi Stage Hybrid Transmission

Lexus developed the Multi Stage Hybrid Transmission for the flagship Lexus LC500h coupe with the aim of achieving an excellent balance between fuel economy and acceleration performance. To gain these benefits, this transmission utilizes a multi-stage approach with the input split mode as an enabler for a concept of multiple high- efficiency points. In order to apply this approach to the transmission, a shift device was located immediately after a power split device. For functioning of the input split mode electrically-controlled continuously variable transmission, the power split device is connected with the motor, generator, and inverters. The optimal gear selection of the shift device to reduce the power loss in accordance with the driving state improves not only fuel economy but also heat management performance compared with the previous hybrid transmission.