Refine Your Search

Topic

Author

Search Results

Technical Paper

A New V-8 Engine for the LEXUS LS 400

1989-09-01
892003
A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Technical Paper

A Robustness-Focused Shape Optimization Method for Intake Ports

2009-06-15
2009-01-1777
Merging a CAE shape optimization system and a concept Taguchi method SN-ratio index, a robustness-focused automated shape optimization method has been developed. Applying this method to diesel intake ports, with mold position tolerance set as the error factor, SN-ratio was defined for swirl stability. As a result of the optimization provided by a multi-objective genetic algorithm, simultaneous improvement of flux, swirl rotation and SN ratio was achieved.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Technical Paper

Analysis of Occupant Kinematics of Rollover Buck Test

2016-04-05
2016-01-1516
Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
Technical Paper

Application of Soap Film Geometry for Low Noise Floor Panels

1999-05-17
1999-01-1799
A method for applying soap film geometry to an automobile body structure has been developed. Its curved surface reduce both interior noise and damping material application because of its high rigidity and uneven deformation mode. This paper demonstrates these mechanism, benchmarks their performance with conventional flat and bead panels and presents an application to the floor panel of an automobile body.
Technical Paper

Deployment of OTA-Upgradable Teammate Advanced Drive

2022-03-29
2022-01-0063
Teammate Advanced Drive is a driving support system with state-of-the-art automated driving technology that has been developed for customers’ safe and secure driving on highways based on the Toyota’s Mobility Teammate Concept. This SAE Level 2 (L2) system assists overtaking, lane changes, and branching to the destination, in addition to providing hands-free lane centering and car following. The automated driving technology includes self-localization onto a High Definition Map, multi-modal sensing to cover 360 degrees of the surrounding environment using fusion of LiDARs, cameras, and radars, and a redundant architecture to realize fail-safe operation when a malfunction or system limitation occurs. High-performance computing is provided to implement deep learning for predicting and responding to various situations that may be encountered while driving.
Technical Paper

Development and Application of an Enhanced SID-IIs Dummy for Analyzing Side Impact Kinematics

2009-04-20
2009-01-1432
Due to the relative high speed and short distance between the door and occupant, side impact presents a challenging task when analyzing the input force from the door to the occupant. The new FMVSS214 Final Rule in 2007 and the new NCAP in 2008 mandated the use of a SID-IIs in the oblique pole impact test and in the rear seat during an MDB side impact test. Therefore, a high-precision measurement and calculation of the three-dimensional dummy kinematics, as well as the interaction of force inside the dummy (internal force) and force exerted from outside the dummy (external force) will help provide efficient evaluation of design requirements for the door trim and supplemental restraint systems that meet legally mandated requirements.
Technical Paper

Development of Automatic Door Lock System to Help Prevent Collisions between Opened Doors and Approaching Vehicles When Exiting Vehicle

2022-03-29
2022-01-0068
Collisions between opened doors and approaching vehicles such as bicycles are common occurrences in urban areas around the world. For example, in Chicago, 20% of all bicycle accidents involve collisions with doors, which occur over 300 times a year. In addition, there are concerns about a further rise in accidents due to the recent increase in home delivery services and bicycle commuting during the COVID-19 pandemic. Some advanced driver assistance systems (ADAS) that are designed to help prevent this type of accident have already been introduced. These systems detect approaching vehicles with sensors and alert the person opening the door via LED lights or a buzzer when the door is opened. The occupant must understand the meaning of the alert and stop opening the door quickly to prevent an accident. However, if the occupant is an elderly person or a child, it is difficult to stop opening the door quickly.
Journal Article

Development of Bio-Based Plastics for Injection Molding

2009-04-20
2009-01-0019
Technological development of materials derived from plants (e.g., polylactic acid (PLA), and the like) is required to break dependence on fossil fuels and reduce CO2. PLA has inferior hydrolysis resistance, impact resistance, and molding ability than polypropylene (PP), and in order to overcome these disadvantages, a novel PP/PLA alloy has been conceived where PLA is incorporated into a PP matrix. By optimizing compatibilizer and elastomer addition, PLA has been successfully dispersed into a PP matrix at a sub-micron order, and interior parts have been successfully developed that fulfill the performance, appearance, and mass-production capability requirements for practical application.
Technical Paper

Development of Hall Effect Device Based Height Sensor

2005-04-11
2005-01-0459
We have developed a Hall effect device based height sensor of a smaller size, and with higher temperature operation durability, as compared to conventional devices. Downsizing of the sensor is realized by decreasing a number of parts, and by employing a short bearing. Improvement in heat resistance is achieved by adopting an IC with sufficient heat resistance and a SmCo magnet with high coercive force. In addition, a sensor of a high degree of accuracy is accomplished by improvements in linearity and robustness of magnetic characteristics. Development of a small, heat-resistant and accurate height sensor will promote the spread of systems using a height sensor, such as a High Intensity Discharge (HID) headlamp.
Technical Paper

Development of New Headliner Material and the Manufacturing Process

1990-02-01
900836
A molded headliner made from polypropylene, which we developed for the first time in the world, was adopted in May 1987 for TOYOTA COROLLA. The new material with high stiffness and light weights, has a sandwich structure consisting of PP-sheets and a PP-foam sheet. We have thus succeeded in the production of the new headliner in which each layer is laminated without any adhesive. A unique resin used for PP-sheets as surface skins was developed with high impact, thermal and fire resistances. Further, a PP-form core sheet with soft-feel and good moldability was also developed. As a result, we established proper conditions of molding this material and succeeded in producing stable superior parts with high quality and short cycle-time. Finally new molded headliner is comparable to the suspended type headliner in respect to weight and production cost.
Technical Paper

Development of Robot Control Method for Curved Seal Extrusion

1998-09-29
982366
The glass-integrated Curved Seal Extrusion (hereafter called “CSE”) is a new technology for manufacturing automobile-window mole. This technology is to extrude and stick mole directly on 3-D shaped window-glass by using the combination of a multi-axes robot and an extruding machine. This process could not be realized through the previous robot technology whose primary purpose was transporting goods, which did not necessitate real-time speed control. This time, we adopted a robot for the purpose of processing plasticity molding. For the purpose of improving formability, productivity, and appearance quality, we optimized the robot's movements and devised a method to vary the molding speed of the extruding machine. Furthermore, we have established a mass production technology by developing the optimum robot control method.
Technical Paper

Development of Robust Design Method in Pedestrian Impact Test

2007-04-16
2007-01-0881
This paper describes that a method has been developed to estimate the range of the scatter of Head Injury Criterion (HIC) values in pedestrian impact tests, which could help to reduce the range of the scatter of HIC values by applying the stochastic method for Finite Element (FE) analysis. A major advantage of this method is that it enables the range of scatter of HIC values to be estimated and to explain the mechanics of the behavior. The test procedure of pedestrian impact allows some tolerances for the resultant conditions of impact such that the distance of actual impact location from the selected point is within 10 mm and the impact velocity is within ±0.7 km/h [1]. A HIC value calculated by impact simulation under a deterministic impact condition with the nominal input data does not necessarily represent the variation of measured data in impactor tests.
Technical Paper

Development of Sealing Material Used in the Body Welding Shop

2007-04-16
2007-01-0418
1 The principal characteristics required of sealing materials used in the body shop have focused on their adhesion to oily steel sheets and quick curing performance. Means for attaining these characteristics have been narrowed down to a basic resin system and a curing system. Various techniques have been studied to ensure proper anti-corrosion performance at the sealer application boundaries and thin application areas. They include the addition of anti-corrosion fillers, the provision of conductivity (through electro-deposition), and the application of a micro foam film over the application boundaries. Thus, prospects for attaining the same level of anti-corrosion performance as existing materials have been achieved.
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Technical Paper

Development of Thermoplastic CFRP for Stack Frame

2016-04-05
2016-01-0532
Weight reduction for a fuel cell vehicle (FCV) is important to contribute a long driving range. One approach to reduce vehicle weight involves using a carbon fiber reinforced plastic (CFRP) which has a high specific strength and stiffness. However, a conventional thermoset CFRP requires a long chemical reaction time and it is not easy to introduce into mass production vehicles. In this study, a new compression-moldable thermoplastic CFRP material for mass production body structural parts was developed and applied to the stack frame of the Toyota Mirai.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Journal Article

Development of Unidirectional CFRP Reinforced Aluminum Bumper Reinforcement

2021-04-06
2021-01-0362
Since bumper reinforcements are positioned at front/rear ends of vehicles, weight reduction of the bumper reinforcements enhances vehicle dynamic performance by reducing a yaw moment of inertia. CFRP (Carbon Fiber Reinforced Plastic) composites are attractive lightweight materials due to their excellent specific strength and rigidity. However, because of their relatively high cost, applications of CFRP materials to vehicle structural parts are limited. In this study we have developed a lightweight, structural part, which consists of a thin-walled Al (Aluminum) bumper reinforcement with a UD (Unidirectional)-CFRP sheet. The intention is to prevent an increased part cost by reducing the amount of Al and by minimizing the amount of CFRP. Compared to Al, UD-CFRP sheets have even higher tensile strength and modulus. When vehicles crash, bumper reinforcements may be subjected to bending force.
X