Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Technical Paper

A Molecular Dynamics Analysis of the Traction Fluids

2007-04-16
2007-01-1016
Non-equilibrium all-atom MD simulations are used to study the traction properties of hydrocarbon fluids. A fluid layer is confined between two solid Fe plates under the constant normal force of 1.0 GPa. Traction simulations are performed by applying a relative sliding motion to the Fe plates. Shear behaviors of nine hydrocarbon fluids are simulated on a sufficiently large film thickness of 6.7 nm, and succeeded in reproducing the order of the experimental traction coefficients. The dynamic mechanism of the momentum transfer on layers of fluid molecules are analyzed focusing on the intermolecular interactions (density profile, orientation factor, pair-correlation function) and intramolecular interactions (intramolecular interaction energy, conformation change of alicyclic ring). In contrast to the case of n-hexane, which shows low traction due to a fragile chain-like interaction, other mechanisms are obtained in the high traction molecules of cyclohexane, dicyclohexyl and santotrac 50.
Technical Paper

A Robustness-Focused Shape Optimization Method for Intake Ports

2009-06-15
2009-01-1777
Merging a CAE shape optimization system and a concept Taguchi method SN-ratio index, a robustness-focused automated shape optimization method has been developed. Applying this method to diesel intake ports, with mold position tolerance set as the error factor, SN-ratio was defined for swirl stability. As a result of the optimization provided by a multi-objective genetic algorithm, simultaneous improvement of flux, swirl rotation and SN ratio was achieved.
Technical Paper

A SEA-Based Optimizing Approach for Sound Package Design

2003-05-05
2003-01-1556
Statistical Energy Analysis (SEA) is a promising tool for developing an efficient sound package design for reducing airborne interior noise at high frequencies. The optimal sound package, however, is not directly predicted by using the SEA vehicle model alone and therefore requires parametric studies of sound package configurations. This paper describes an effective method for using SEA modeling to achieve the desired interior noise level targets. A mathematical model, expressed by one equation, is derived on the assumption that the directions of the power flows are known in the SEA model. This equation describes the relationship between sound package properties and the resulting interior noise level. Using the relationship between weight and performance of sound package, an efficient configuration can be determined. The predicted sound pressure level of the vehicle interior with the optimized sound package correlated well to the experimental data for the case presented in this paper.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Technical Paper

A Study of Evaluating the Real-time Property for Engine Control Software

2001-03-05
2001-01-0058
Recently, the role of ECU(Electronic Control Unit) on vehicles has been becoming more important year by year in order to meet the requirements for safety and the environmental matters. Particularly, the ECU of Engine Management Systems has been becoming indispensable in order to realize high performance, low fuel consumption and low exhaust emission. Therefore, the size of software has also been increasing, and been becoming more complex and complicated. As the ECU software size becomes large and complex, the verification and validation of the software by using the current development method has been becoming more difficult. Especially it has been becoming more difficult to validate the Real-time property of the software. The Real-time property means whether the execution of the software is in time for the deadline which is decided on the software design.
Technical Paper

A Study of Greenhouse Gas Emissions Reduction Opportunity in Light-Duty Vehicles by Analyzing Real Driving Patterns

2017-03-28
2017-01-1162
Electric drive vehicles (EDV) have the potential to greatly reduce greenhouse gas (GHG) emissions and thus, there are many policies in place to encourage the purchase and use of gasoline-hybrid, battery, plug-in hybrid, and fuel cell electric vehicles. But not all vehicles are the same, and households use vehicles in very different ways. What if policies took these differences into consideration with the goal of further reducing GHG emissions? This paper attempts to answer two questions: i) are there certain households that, by switching from a conventional vehicle to an EDV, would result in a comparatively large GHG reduction (as compared to other households making that switch), and, if so, ii) how large is the difference in GHG reductions? The paper considers over 65,000 actual GPS trip traces (generated by one-second interval recording of the speed of approximately 2,900 vehicles) collected by the 2013 California Household Travel Survey (CHTS).
Technical Paper

A Study on Energy-Absorbing Mechanism of Plastic Ribs

1998-09-29
982346
This paper describes development of a numerical simulation method for the FMVSS 201 testing. This method considers not only deformation but also fracture of plastic materials. a simplified calculation method for predicting the load during impact of absorbing plastic materials was introduced from the numerical simulation results. By applying this simplified calculator method trial and error in development would be reduced.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
Technical Paper

A Target Cascading Method Using Model Based Simulation in Early Stage of Vehicle Development

2019-04-02
2019-01-0836
In the early stages of vehicle development, it is important for decision makers to understand a feasible constraint region that satisfies all system level requirements. The purpose of this paper is to propose a target cascading method to solve for a feasible design region which satisfies all constraints of the system based on model based simulation. In this method, the feasible design region is explored by using both global optimization methods and active learning techniques. In optimization problems, the inverse problem for understanding feasibility for specific designs is defined and solved. To determine the objective functions of the inverse problem, an index representing the achievement level of constraints from system requirements is introduced. To predict feasible regions in the specific design space, a surrogate model of minimized values of the index is trained by using a kriging model.
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Technical Paper

Advanced Thermal Comfort in the Passenger Vehicle Compartment

2002-10-21
2002-21-0053
The demand for thermal comfort in the passenger vehicle compartment is infinite. As a result, technologically sophisticated options and features continue to be upgraded both in the hardware and software sectors. The personalization of comfort became a priority and led to improvements in automatic room temperature control techniques. Furthermore, the demand is rising not only for thermal comfort but also for cabin air quality improvement. Also, contributions to improve mileage and fuel consumption are a new request at the present time. This paper introduces the latest thermal comfort technologies in temperature and airflow controls as well as air quality improvement features. In addition, this paper introduces fuel consumption reduction technology employed by the A/C configuration of the TOYOTA HYBRID SYSTEM.
Journal Article

An Application of Model Based Combustion Control to Transient Cycle-by-Cycle Diesel Combustion

2008-04-14
2008-01-1311
From the viewpoint of the global warming restraint, reduction of exhaust emissions from diesel engine is urgent demand. However, it needs further development in combustion control besides after treatment system. Larger amount of EGR (Exhaust Gas Recirculation) is effective to reduce NOx emission. On the other hand, in-cylinder physical conditions greatly influence on self-ignition and combustion process, especially low O2 fraction charged gas owing to excessive EGR causes misfire. A drastic solution for this problem, fuel injection timing should be optimally manipulated based on predicted ignition delay period before actual injection. For this purpose, Toyota has developed a model based diesel combustion control concept to avoid the misfire and to keep low emission combustion includes in transient condition.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Technical Paper

Analysis and Simplification of Thermal Endurance Tests of NOx Storage-Reduction Catalysts

2004-03-08
2004-01-1496
Our two types of NOx storage-reduction (NSR) catalyst have been tested under various conditions of thermal endurance; the performance of these catalysts have been regressed to give the formulas that enable to estimate the performance after thermal endurance; and we have found the method to simplify (shorten the duration of) the thermal endurance tests and that the thermal deterioration of NSR catalysts is controlled by the worst condition of endurance (at least approximately). The regression formula for the amount of potassium that contributes to the catalyst performance (active K) after the endurance has also been obtained. These formulas predict that the amount of active K is the least for the worst condition of endurance and suggest a difference in deterioration mechanism that reflects the performance between low and high temperatures and the portion of worse deterioration (front or rear).
Technical Paper

Analysis for Relationship between Vehicle NOx Emission and Roadside NO2 Concentration

2008-04-14
2008-01-0755
NO2 sources of roadside atmosphere at Matsubarabashi monitoring station in Tokyo were investigated analytically. The result showed that contribution of urban background is dominant from November to February and NO oxidation with O3 has large contribution from April to September. NO2 air quality standard will be achieved by reducing vehicle NOx emission to post-new long-term regulation level. The analytical method was verified by using our developed simulation system, which consists of micro traffic flow analyzer and CFD-based, unsteady-state diffusion with chemical reaction solver.
Technical Paper

Analysis for Vibration Caused by Starter Shaft Resonance

2016-04-05
2016-01-1319
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
Technical Paper

Analysis of EGR Cyclic Variations in a Direct Injection Gasoline Engine by Using Raman Scattering Method

2002-05-06
2002-01-1646
The Raman scattering method has been developed for the simultaneous, cycle by cycle measurement of HC, O2, H2O, and N2 in a direct injection gasoline engine with EGR. By using the Raman scattering method, the effect of EGR on stratified charge combustion can be investigated in a direct injection SI gasoline engine. The results show that (1) at the compression stroke homogeneous EGR gas exists, (2) variation of component mass fraction of EGR (qualitative fluctuation) introduced in the previous combustion cycle is the primary reason for EGR fluctuation, (3) under normal operating conditions, EGR fluctuation (component mass fraction and quantitative fluctuation) doesn't influence on the combustion fluctuation at the stratified charge operation.
Journal Article

Analysis of Piston Friction in Internal Combustion Engine

2013-10-14
2013-01-2515
The purpose of this study is to analyze the piston skirt friction reduction effect of a diamond-like carbon (DLC)-coated wrist pin. The floating liner method and elasto-hydrodynamic lubrication (EHL) simulation were used to analyze piston skirt friction. The experimental results showed that a DLC-coated wrist pin reduced cylinder liner friction, and that this reduction was particularly large at low engine speeds and large pin offset conditions. Friction was particularly reduced at around the top and bottom dead center positions (TDC and BDC). EHL simulation confirmed that a DLC-coated wrist pin affects the piston motion and reduces the contact pressure between the piston skirt and cylinder liner.
Technical Paper

Analysis of Potassium Storage Components in NOx Catalysts Application of Analytical Techniques and DFT Computations to Catalytic Analysis

2004-03-08
2004-01-1494
By using analytical techniques (FT-IR, TG-MS, ICP) and DFT calculations, the potassium (K) used as a storage component in NOx Catalysts can be analyzed. The results from this study show that the, K exists as K2CO3, and that the amount, molecular structure, and thermal stability of K2CO3 are different, depending on the support material (ZrO2, Al2O3, or TiO2). If the amount of K that interacts with the support to form an inactive complex oxide is decreased, the amount of K2CO3 and NOx storage is increased. The amount of the inactive K varies with the basicity of the supports. K2CO3 that exists in unstable structures on the supports can be easy to react with NOx to form the nitrate. So, the higher the quantity of unstable K2CO3, the higher the NOx storage capacity. Based on these results, a development guideline was proposed to improve the NOx storage performance.
X