Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Air Bag Deployments Involving Restrained Occupants

1995-02-01
950868
As a consequence of various federal and provincial initiatives to promote the use of seat belts in Canada, the wearing rate of seat belts among front outboard passenger car occupants is now estimated at 90 percent. Accordingly, the vast majority of air bag deployments in Canada involve restrained occupants. In order to gain a better understanding of the field performance of air bag systems, Transport Canada recently initiated an m-depth study of motor vehicle collisions involving air bag deployments. To date, investigations have been completed on 242 such collisions. While the preliminary data suggest that supplementary air bag systems provide considerable added protection against serious head injuries in moderate and high severity frontal crashes, they also suggest that, in low severity crashes, deployment of an air bag system may expose belted occupants to unnecessary injury risk from the air bag itself.
Technical Paper

Assessment of Injury Risk to Children From Side Airbags

2000-11-01
2000-01-SC02
Static out-of-position tests were performed to identify the potential for injury as a function of position, airbag type and vehicle seat characteristics. Seat and door mounted airbags, head curtains and head tubes were evaluated. Out-of-position testing was carried out with the Hybrid III 3 year old, 6 year old and the TNO Q3 3 year old child dummies. In-position tests and a dynamic test were conducted to monitor child seat and airbag interactions and to confirm that properly restrained children would not be exposed to undue risk from a deploying side airbag. Results of the out-of-position testing suggest that current side airbag designs may cause serious and/or fatal neck and chest injuries. In-position static testing with child seats suggested a potential for intrusion into the child occupant space leading to structural damage of the car seat.
Technical Paper

Crush Measurement for Side Impacts Using a Total Station

1996-02-01
960100
Detailed knowledge of the load paths at the vehicle/dummy interface in side impact crash tests is an essential component in the evaluation of side impact protection systems. In the laboratory, measurements of the external crush and occupant compartment intrusion profiles may be made with great precision. Recent advances in portable electronic measurement instruments have resulted in such procedures also being possible in the field. This paper describes the use of a total station to obtain these data for real-world side impact collisions. This information is likely to provide additional insight into specific injury mechanisms in such crashes.
X