Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Comparison Of Hybrid III 5th Female Dummy Chest Responses In Controlled Sled Trials

The responses of a Hybrid III 5th percentile dummy manufactured by Denton ATD were compared to a Hybrid III 5th percentile dummy manufactured by First Technology Safety Systems (FTSS). The dummies were seated on a HYGE sled set in a representative small production sedan configuration, simulating a 60 km/h offset deformable barrier (25 g pulse) and a 22 km/h crash (11 g pulse). Three shoulder retractor anchorage positions were used to place the shoulder belt at different locations on the dummy shoulder for each of the driver (left shoulder) and passenger (right shoulder) seating positions. Chest deflections measured from the rotary potentiometer are compared to deflections calculated from the accelerometers and are reported as a function of belt load and belt position. Repeatability is evaluated at low and high deflection levels.
Technical Paper

Air Bag Deployments Involving Restrained Occupants

As a consequence of various federal and provincial initiatives to promote the use of seat belts in Canada, the wearing rate of seat belts among front outboard passenger car occupants is now estimated at 90 percent. Accordingly, the vast majority of air bag deployments in Canada involve restrained occupants. In order to gain a better understanding of the field performance of air bag systems, Transport Canada recently initiated an m-depth study of motor vehicle collisions involving air bag deployments. To date, investigations have been completed on 242 such collisions. While the preliminary data suggest that supplementary air bag systems provide considerable added protection against serious head injuries in moderate and high severity frontal crashes, they also suggest that, in low severity crashes, deployment of an air bag system may expose belted occupants to unnecessary injury risk from the air bag itself.
Technical Paper

Assessment of Injury Risk to Children From Side Airbags

Static out-of-position tests were performed to identify the potential for injury as a function of position, airbag type and vehicle seat characteristics. Seat and door mounted airbags, head curtains and head tubes were evaluated. Out-of-position testing was carried out with the Hybrid III 3 year old, 6 year old and the TNO Q3 3 year old child dummies. In-position tests and a dynamic test were conducted to monitor child seat and airbag interactions and to confirm that properly restrained children would not be exposed to undue risk from a deploying side airbag. Results of the out-of-position testing suggest that current side airbag designs may cause serious and/or fatal neck and chest injuries. In-position static testing with child seats suggested a potential for intrusion into the child occupant space leading to structural damage of the car seat.
Technical Paper

Crush Measurement for Side Impacts Using a Total Station

Detailed knowledge of the load paths at the vehicle/dummy interface in side impact crash tests is an essential component in the evaluation of side impact protection systems. In the laboratory, measurements of the external crush and occupant compartment intrusion profiles may be made with great precision. Recent advances in portable electronic measurement instruments have resulted in such procedures also being possible in the field. This paper describes the use of a total station to obtain these data for real-world side impact collisions. This information is likely to provide additional insight into specific injury mechanisms in such crashes.
Technical Paper

ES-2 Dummy Biomechanical Responses

This technical paper presents the results of biomechanical testing conducted on the ES-2 dummy by the Occupant Safety Research Partnership and Transport Canada. The ES-2 is a production dummy, based on the EuroSID-1 dummy, that was modified to further improve testing capabilities as recommended by users of the EuroSID-1 dummy. Biomechanical response data were obtained by completing a series of drop, pendulum, and sled tests that are outlined in the International Organization of Standardization Technical Report 9790 that describes biofidelity requirements for the midsize adult male side impact dummy. A few of the biofidelity tests were conducted on both sides of the dummy to evaluate the symmetry of its responses. Full vehicle crash tests were conducted to verify if the changes in the EuroSID-1, resulting in the ES-2 design, did improve the dummy's testing capability. In addition to the biofidelity testing, the ES-2 dummy repeatability, reproducibility and durability are discussed.
Technical Paper

ESV '01 government of Canada status report

In the fall of 2000, the Council of Ministers agreed that Canada should retain the vision of having the safest roads in the world, and that a longer term successor plan, called Road Safety Vision 2010, carry forward the work of Canada's inaugural national road safety plan. It was further agreed that the plan include an overall national target and sub-targets. A national target that calls for 30% decreases in the average number of road users killed and seriously injured during the 2008-2010 period below comparable 1996-2001 figures is currently under consideration. Achievement of this target would reduce Canada's road fatality total to fewer than 2100 by 2010.
Technical Paper

Evaluation of the ES-2re Dummy in Biofidelity, Component, and Full Vehicle Crash Tests

This technical paper presents the results from tests conducted with the ES-2re, a version of the ES-2 side impact dummy that was modified by the National Highway Traffic Safety Administration (NHTSA) to improve its performance in crash tests. Through the series of biofidelity tests conducted on the ES-2re, described in International Standards Organization (ISO) Technical Report (TR)9790 (1999), the OSRP observed a final overall biofidelity ranking of 4.1 for the ES-2re, which corresponds to an ISO classification of “marginal.” The biofidelity of the ES-2re is compared to that of the ES-2 and the WorldSID. Repeatability was also evaluated on the ES-2re based on the biofidelity test data. Additional pendulum tests were performed to assess the response of the dummy in oblique loading conditions, and results indicate that oblique loading from the front leads to significantly reduced rib deflections.
Technical Paper

Investigation of Dummy Response and Restraint Configuration Factors Associated with Upper Spinal Cord Injury in a Forward-Facing Child Restraint

Dummy response and restraint configuration factors associated with a known child injury environment were investigated using a spinal-cord injury accident case, a full-scale reconstruction, and sled simulations. The work is one of several studies undertaken in association with the International Task Force on Child Restraining Systems to support the development of improved neck injury criteria and restraint systems for young children. A two-vehicle crash involving a restrained child occupant was investigated in detail and reconstructed in full-scale at the Transport Canada Motor Vehicle Test Centre using the CRABI 6-Month dummy. Vehicle damage and crush characteristics closely resembled that of the case vehicles. Dummy instrumentation included head and chest accelerometers and upper and lower neck transducers. The case occupant had been facing forward and had sustained a contusion of the spinal cord at T2 that resulted in paraplegia.
Technical Paper

Responses of the Q6/Q6s ATD Positioned in Booster Seats in the Far-Side Seat Location of Side Impact Passenger Car and Sled Tests

Passenger car side impact crash tests and sled tests were conducted to investigate the influence of booster seats, near-side occupant characteristics and vehicle interiors on the responses of the Q6/Q6s child ATD positioned in the rear, far-side seating location. Data from nine side impact sled tests simulating a EuroNCAP AEMD barrier test were analyzed with data obtained from 44 side impact crash tests. The crash tests included: FMVSS 214 and IIHS MDB, moving car-to-stationary car and moving car-to-moving car. A Q6 or prototype Q6s ATD was seated on the far-side, using a variety of low and high back booster seats. Head and chest responses were recorded and ATD motions were tracked with high-speed videos. The vehicle lateral accelerations resulting from MDB tests were characterized by a much earlier and more rapid rise to peak than in tests where the bullet was another car.
Technical Paper

Restraint System Effectiveness as a Function of Seating Position

Drawing on provincial data files maintained by Transport Canada, the injury experience of passenger vehicle occupants as a function of occupant seating position, reported restraint use and occupant age is examined. Particular attention is given to the issue of rear seat lap belt effectiveness. Estimates of restraint system effectiveness are derived using a variety of approaches. These range from direct comparisons of the relative injury/fatality rates of restrained and unrestrained occupants in reportable accidents to double-pair comparisons based on “subject” and “control” occupants in fatal accidents. Available Canadian data suggest that the use of three-point seat belts by front seated occupants and the use of lap belts by rear seated occupants substantially reduces the likelihood of serious or fatal injury.
Technical Paper

SID-IIS Response in Side Impact Testing

The responses of a 5th percentile female ATD in the driver and/or rear passenger positions of 56 crashes are described. The Transport Canada side impact programme consisted of LTV-to-car impacts, car-to-car impacts and IIHS barrier-to-car tests. The majority of the tests involved severe crash conditions for which the vehicles were not designed. The SID-IIs head, chest and abdominal responses were compared to determine the effects of the striking bullet geometry, the angle of impact, the impact point and the self-protective elements of the struck vehicle, including airbag technology and armrest designs. The SID-IIs head responses and deflection measures were sufficiently sensitive to discriminate between the various striking vehicles, crash configurations, airbag systems and armrest characteristics.
Technical Paper

The Effect Of Breast Anthropometry On The Hybrid III 5th Female Chest Response

Two manufacturers, Denton ATD and FTSS, currently produce the Hybrid III 5th percentile female dummy. In response to concerns raised by industry that differences in the anthropometry of the molded breasts between the two manufacturers may influence chest responses, Transport Canada conducted a comparative testing program. Thorax biofidelity tests were conducted to compare force-deflection characteristics; full-frontal, rigid-barrier tests were conducted at 40, 48 and 56 km/h to compare chest responses, and out-of-position chest on module static airbag deployment tests were conducted to compare peak chest deflections of the Denton and FTSS dummy jackets and of a prototype jacket without breasts. Differences in force-deflection characteristics were observed during biofidelity pendulum impacts of the two dummies, with much of the differences attributed to the different chest jackets.
Technical Paper

The Electronic Belt Fit Test Device – Methodology, Results, and Prospects

Correctly fitted seat belts save the lives of car passengers everyday. In attempt to reduce the risk of injuries, primarily abdominal, caused by inappropriate belt fitting, Transport Canada developed the Belt fit Test Device (BTD). The BTD is a physical hardware measuring device that tests whether the lap and torso belt are appropriately positioned with respect to the bony structures of the pelvis and rib cage of the restrained occupant. To overcome the deviations of hardware physical tests and to enable review of belt design in early design phases, the Alliance of Automobile Manufacturers funded the development of an electronic simulation and modeling tool in the form of an electronic Belt fit Test Device (eBTD). The development takes place in close co-operation with the Joint Working Group on Abdominal Injury Reduction (JWG-AIR).
Technical Paper

The electronic belt-fit test device (eBTD): A method for certifying safe seat belt fit

The belt-fit test device (BTD) measures and assesses static seat belt geometry of automobile seat belts. It was conceived and developed by Transport Canada throughout the 1970s, 1980s and 1990s to address abdominal and upper body injuries that resulted from a mismatch between seat belt geometry and occupants' anthropometric characteristics. When positioned on an automobile seat, the BTD indicates whether the lap and shoulder belts fall within specified bounds that have been established to minimize the risk of serious injuries to soft tissue and organs from belt intrusion. Recently, work has focused on the development of an electronic version of the BTD using computer-human modeling techniques and computer-aided design (CAD). Tecmath AG, creators of the RAMSIS™ 3D human modeling system, are currently developing an electronic BTD (or eBTD).
Technical Paper

Trailer Underride Protection - A Canadian Perspective

This paper provides details on the tests performed and the research findings of an underride guard test programme, including 10 full scale crashes using three types of deformable guards. The deformable guards tested included one meeting the minimum requirements of the NHTSA FMVSS 223 with ground clearances of either 560 or 480 mm, a second meeting the same minimum performance criteria with the addition of a device to limit the displacement of the horizontal member (ground clearance of 480 mm only) and a third being stiffer and designed to roughly maintain its 560 mm ground clearance during deformation. Crash tests were performed at speeds of 48, 56 and 65 kph.