Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Accelerometers Equivalency in Dummy Crash Testing

1996-02-01
960454
The National Highway Traffic Safety Administration has initiated research to develop performance specifications for dummy-based accelerometers in the crash test environment, and to provide criteria for defining and establishing equivalent performance among accelerometers from different manufacturers. These research efforts are within the general guidelines on transducer equivalency outlined in the current revision of the Society of Automotive Engineers recommended practice, Instrumentation for Impact Test, SAE 211/2 March 1995. Representative data from vehicle crash and component level tests have been analyzed to determine the acceleration levels and frequency content in a realistic dynamic environment for dummy-based accelerometers.
Technical Paper

Accident Investigation and Impairment Study of Lower Extremity Injury

1993-03-01
930096
The automotive safety community has grown increasingly aware of the societal costs of injury impairment and disability resulting from automobile accidents. A significant portion of this impairment can be attributed to lower extremity trauma. An accident data study was conducted to determine lower extremity injury frequencies and mechanisms for restrained front-seat occupants in frontal collisions. A query of the 1988-1990 NASS (National Accident Sampling System) data provided information on pelvis, femur, knee, leg, and ankle and foot injuries. Age, gender, seating position, and delta-V were examined for their effect on the data. Lower extremity injury data were compared with injury data of similar severity (AIS ≥ 2) for the head, chest, thorax, and abdomen. The NASS data was supplemented with injury impairment information which, combined with anthropomorphic and biomechanical data, provides a prioritization scheme for the design of dummy lower extremities and instrumentation.
Technical Paper

An Experimental Examination of Double Lane Change Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1009
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed during the spring through fall of 2001. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 2” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from four Rollover Resistance maneuvers are presented. The Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are discussed. Details regarding the NHTSA J-Turn, and the three fishhook maneuvers are available in “Volume 1” [2].
Technical Paper

An Experimental Examination of J-Turn and Fishhook Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1008
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed in 2001, starting in the spring and continuing through the fall. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 1” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from one Characterization maneuver (the Slowly Increasing Steer maneuver) and four Rollover Resistance maneuvers are discussed (the NHTSA J-Turn, Fishhook 1a, Fishhook 1b, and Nissan Fishhook). Details regarding NHTSA's assessment of the Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are available in “Volume 2” [2].
Technical Paper

Assessing Arm Injury Potential From Deploying Air Bags

1997-02-24
970400
A study of the National Accident Sampling System (NASS) found an increase in upper extremity injuries when drivers were restrained by a seat belt and air bag as opposed to a seat belt alone. These injuries were attributed to forces from the air bag deploying or the air bag projecting the arm into vehicle components or the upper body of the driver. Two evaluation methods were used to assess the extent of injury and aggressiveness of different driver side air bags. The RAID, developed by Conrad Technology, and the Hybrid III instrumented arm, tested at the Vehicle Research and Test Center, were used in static testing to evaluate the effect of air bags on the arm. The positions of the RAID and the Hybrid III arm simulated the arm in four different turning positions with the forearm across the center of the wheel. Both devices recorded arm moments and accelerations. Film analysis determined the cause of the peak resultant moment for each bag in the four configurations.
Technical Paper

Evaluation of injury risk from side impact air bags

2001-06-04
2001-06-0091
Several thoracic and head protection side impact air bag systems (SAB) are emerging in the U.S. market and are projected to become prevalent in the fleet. These systems appear to offer superior protection in side crashes. However, concerns have been raised as to their potential for causing injury to out-of-position (OOP) occupants. This paper describes the National Highway Traffic Safety Administration (NHTSA) program for evaluation of the SAB systems for OOP occupants and provides a status report on the current research. The industry's Side Airbag Out-of- Position Injury Technical Working Group (TWG) recommended procedures for 3-year-old and 6-year-old occupants are evaluated. Additional test procedures are described to augment the TWG procedures for these occupants and 12-month- old infants.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Summary of Design and Performance Requirements for the Dummy Lower Extremities

1993-03-01
930097
Development of improved dummy lower extremities which are compatible with both the Hybrid III design and with other advanced torso designs is continuing. The first task was to establish the design and performance requirements for these new crash dummy components. To achieve this, an extensive literature review of relevant biomechanical studies was carried out and a detailed accident investigation of crashes involving lower extremity injury was performed. Finally, detailed discussions were conducted with biomechanical and clinical experts. The innfromation gained through these efforts was synthesized into a detailed set of design goals and requirements for the improved lower extremities, which are summarize in this paper.
X