Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Bench Technique for Evaluating High Temperature Oxidation and Corrosion Tendencies of Automotive Crankcase Lubricants

1968-02-01
680538
A technique for evaluating high temperature oxidation and corrosion tendencies of automotive crankcase lubricants is described. The technique utilizes a versatile bench apparatus which, with a minimum of modification, can be used for either evaluating thermal oxidation stability of gear lubricants or oxidation-corrosion tendencies of automotive crankcase lubricants. The apparatus is relatively compact and requires a minimal lubricant sample. Design of the apparatus permits close control of all operating parameters and provides satisfactory test data repeatability. Retainable copper-lead test bearings are used as the indicator in predicting a pass or fail of fully formulated crankcase lubricants as in the case of the CRC L-38-559 (Federal Test Method 3405) technique. Engine and bench test data are compared to illustrate the capabilities of this new bench technique.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

A History of Mack Engine Lubricant Tests from 1985-2005: Mack T-7 through Mack T-12

2005-10-24
2005-01-3713
As on-highway, heavy-duty diesel engine designs have evolved to meet tighter emissions specifications and greater customer requirements, the crankcase environment for heavy-duty engine lubricants has changed. Engine lubricant quality is very important to help ensure engine durability, engine performance, and reduce maintenance downtime. Beginning in the late 1980's, a new Mack genuine oil specification and a new American Petroleum Institute (API) heavy-duty engine lubricant category have been introduced with each new U.S. heavy-duty, on-highway emissions specification. This paper documents the history and development of the Mack T-7, T-8, T-8A, T-8E, T-9, T-10, T-11, and T-12 engine lubricant tests.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A New Engine Test for the Development of Heavy Duty Diesel Engine Oils for Engines with Exhaust Gas Recirculation: The Mack T-10 Test

2000-06-19
2000-01-1985
More stringent emission legislation has been a driver for changes in the design of Heavy Duty Diesel engines since the 1980s. Optimization of the combustion processes has lead to significant reductions of exhaust emission levels over the years. However, in the year 2002, diesel engines in the USA will have to meet an even more stringent set of emission requirements. Expectations are that this will force most engine builders to incorporate Exhaust Gas Recirculation (EGR). Several studies of the impact of EGR on lubricant degradation have shown increased levels of contamination with soot particles and acidic components. Both of these could lead to changes in lubricant requirements. The industry is developing a new specification for diesel engine lubricants, PC-9, using test procedures incorporating engines with EGR.
Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
Technical Paper

A Single Cylinder Medium Speed Diesel Engine Research Facility

1988-08-01
881163
A Single Cylinder Medium Speed diesel engine research facility has been developed for investigating areas of current technical concern to the rail, marine and stationary power industries. The design and operation of this Single Cylinder Research Engine (SCRE) is described. The facility is centered around a Bombardier model 251-plus 11.0 L engine which is representative of four stroke multi-cylinder railroad, marine and small stationary powerplant engines. All engine support systems (air, cooling water, fuel oil and lubricating oil pumps) operate independent of the engine enabling a wide range of adjustments in flow, pressure and temperature. Current program areas for which this system is used include alternative fuels evaluation, combustion analyses, fuel injection system development, component wear and durability studies, engine friction analyses, lubricant testing and emissions evaluations.
Journal Article

A Study Isolating the Effect of Bore-to-Stroke Ratio on Gasoline Engine Combustion Chamber Development

2016-10-17
2016-01-2177
A unique single cylinder engine was used to assess engine performance and combustion characteristics at three different strokes, with all other variables held constant. The engine utilized a production four-valve, pentroof cylinder head with an 86mm bore. The stock piston was used, and a variable deck height design allowed three crankshafts with strokes of 86, 98, and 115mm to be tested. The compression ratio was also held constant. The engine was run with a controlled boost-to-backpressure ratio to simulate turbocharged operation, and the valve events were optimized for each operating condition using intake and exhaust cam phasers. EGR rates were swept from zero to twenty percent under low and high speed conditions, at MBT and maximum retard ignition timings. The increased stroke engines demonstrated efficiency gains under all operating conditions, as well as measurably reduced 10-to-90 percent burn durations.
Technical Paper

Advanced Test Methods Aid in Formulating Engine Oils for Fuel Economy

2016-10-17
2016-01-2269
Chassis dynamometer tests are often used to determine vehicle fuel economy (FE). Since the entire vehicle is used, these methods are generally accepted to be more representative of ‘real-world’ conditions than engine dynamometer tests or small-scale bench tests. Unfortunately, evaluating vehicle fuel economy via this means introduces significant variability that can readily be mitigated with engine dynamometer and bench tests. Recently, improvements to controls and procedures have led to drastically improved test precision in chassis dynamometer testing. Described herein are chassis dynamometer results from five fully formulated engine oils (utilizing improved testing protocols on the Federal Test Procedure (FTP-75) and Highway Fuel Economy Test (HwFET) cycles) which not only show statistically significant FE changes across viscosity grades but also meaningful FE differentiation within a viscosity grade where additive systems have been modified.
Technical Paper

Alternative Fuel Testing on a Port Fuel Injected LPL EGR and D-EGR® Engine

2016-10-17
2016-01-2170
A turbocharged 2.0 L PFI engine was modified to operate in a low-pressure loop and Dedicated EGR (D-EGR®) engine configuration. Both engine architectures were operated with a low and high octane gasoline as well as three ethanol blends. The core of this study focused on examining combustion differences at part and high loads between the selected fuels and also the different engine configurations. Specifically, the impact of the fuels on combustion stability, burn rates, knock mitigation, required ignition energy, and efficiency were evaluated. The results showed that the knock resistance generally followed the octane rating of the fuel. At part loads, the burn rates, combustion stability, and EGR tolerance was marginally improved with the high ethanol blends. When combustion was not knock or stability limited, the efficiency differences between the fuels were negligible. The D-EGR engine was much less sensitive to fuel changes in terms of burn rates than the LPL EGR setup.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

An Exploratory Look at an Aggressive Miller Cycle for High BMEP Heavy-Duty Diesel Engines

2019-04-02
2019-01-0231
Through aggressive application of the Miller Cycle, using two-stage turbocharging, medium speed diesel marine and stationary power engines are demonstrating over 30 bar rated power BMEP, and over 50 percent brake thermal efficiency. The objective of this work was to use engine cycle simulation to assess the degree to which the aggressive application of the Miller Cycle could be scaled to displacements and speeds more typical of medium and heavy truck engines. A 9.2 liter six-cylinder diesel engine was modeled. Without increasing the peak cylinder pressure, improved efficiency and increased BMEP was demonstrated. The level of improvement was highly dependent on turbocharger efficiency - perhaps the most difficult parameter to scale from the larger engines. At 1600 rpm, and a combined turbocharger efficiency of 61 percent, the baseline BMEP of 24 bar was increased to over 26 bar, with a two percent fuel consumption improvement.
Technical Paper

Analysis of a Novel Two-Stroke Engine Scavenging Arrangement: The Neutron Engine

1995-09-01
952140
A unique two-stroke engine design is investigated in which fresh mixture is introduced into the cylinder through a valve in the piston crown, and exhausted through peripheral cylinder ports. The engine behaves as a free-piston engine through a portion of the cycle when the piston lifts off the valve seat. The fresh air jet rising along the cylinder centerline effectively displaces the burned gases with little mixing of the two streams. The concept was analyzed by a combination of dynamic cycle simulation and prediction of the in-cylinder flow characteristics by multidimensional modeling. The cycle simulation program considered the dynamics of the piston during its free motion as well as under the kinematic constraints of the crank system. A zero-dimensional thermodynamic model of the cylinder was used to predict cycle pressure and temperature, indicated power, fuel consumption, and flow in and out of the cylinder.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Army Use of Near-Infrared Spectroscopy to Estimate Selected Properties of Compression Ignition Fuels

1993-03-01
930734
The U.S. Army has long identified the need for rapid, reliable methods for analysis of fuels and lubricants on or near the battlefield. The analysis of fuels and lubricants under battlefield or near-battlefield conditions requires that the equipment be small, portable, rugged, quick, and easy to use. Over the past 15 to 20 years, several test kits and portable laboratories have been developed in response to this need. One instrumental technique that has been identified as a likely candidate to meet this need is near-infrared spectroscopy (NIR). To evaluate NIR as a candidate, a set of 280 fuel samples was used. This sample set contained samples of diesel fuel grades 1 and 2, Jet A-l, JP-5, and JP-8. Inspection data were collected on all the fuels as sample size permitted. Each sample was then scanned using a near-infrared spectrometer. Data analysis, model building, and calibration were conducted using a software package supplied with the instrument.
Technical Paper

Automated Acquisition and Reduction of Engine Lubricant Test Data

1977-02-01
770625
An automated data handling system to assist in the operation of a diesel engine lubricant test laboratory, involving two mini-computers, is described in terms of why it was needed, the design goals sought, and the operating experience which resulted from its use. The concept of two digital systems, one for on-line data logging and another as a ready back-up, as well as a data processor, is discussed. Direct and peripheral benefits which have resulted from the application of the system, such as semi-automated report processing, operational aids, and various engineering applications, are reported.
Journal Article

Bridging the Knock Severity Gap to CFR Octane Rating Engines

2020-09-15
2020-01-2050
It is widely acknowledged that the CFR octane rating engines are not representative of modern engines and that there is a gap in the quantification of knock severity between the two engine types. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engines and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were tested with varying composition, octane numbers and ethanol blend levels. The paper reports on the fourth part of this study where cylinder pressures were recorded under standard knock conditions in CFR engines under RON and MON conditions using the ASTM prescribed instrumentation. By the appropriate signal conditioning of the D1 detonation pickups on the CFR engines, a quantification of the knock severity was possible that had the same frequency response as a cylinder pressure transducer.
Technical Paper

Bulkhead Loading Calculation of an Aluminum Engine Block Coupled with a Rotating Crankshaft through Elastohydrodynamic Bearings

2007-04-16
2007-01-0267
During a new engine development program, or the adaptation of an existing engine to new platform architectures, testing is performed to determine the durability characteristics of the basic engine structure. Such testing helps to uncover High Cycle durability-related issues that can occur at the bulkhead walls as well as cap bolt thread areas in an aluminum cylinder block. When this class of issues occurs, an Elastohydrodynamic (EHD) bearing simulation capability is required. In this study, analytical methods and processes are established to calculate the localized distributed load on the bulkhead. The complexity in performing a system analysis is due to the nonlinear coupling between the bearing hydrodynamic pressure distribution and the crankshaft and block deformation. A system approach for studying the crankshaft-block interaction requires a crankshaft flexible body dynamics model, an engine block assembly flexible body dynamics model and a main bearing lubrication model.
X