Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Advanced Development of the Regenerative Microbial Check Valve

1993-07-01
932175
The Microbial Check Valve (MCV) is a reloadable flow-through canister containing iodinated ion exchange resin, which is used aboard the Shuttle Orbiter as a disinfectant to maintain water potability. The MCV exhibits a significant contact kill and imparts a biocidal residual I2 concentration to the effluent. MCVs in current use have nominal 30 day lives. MCVs baselined for Space Station Freedom will have 90 day lives, and will require replacement 120 times over 30 years. Means to extend MCV life are desirable to minimize resupply penalties. New technology has been developed for fully autonomous in situ regeneration of an expended MCV canister. The Regenerative Microbial Check Valve (RMCV) consists of an MCV, a packed bed of crystalline I2, a flow diverter valve, an in-line iodine monitor and a microcontroller. During regeneration, flow is directed first through the packed I2 bed and then into the MCV where the resin is replenished.
Technical Paper

Chemistry and Kinetics of I2 Loss in Urine Distillate and Humidity Condensate

1992-07-01
921314
A significant decline in molecular iodine concentration is associated with the iodination of heavily contaminant-laden process water streams such as humidity condensate and urine distillate. Iodine loss is attributable to the reaction of this biocide with organic constituents. This phenomenon has been investigated using time resolved molecular absorption spectrophotometry of iodinated ersatz humidity condensates and iodinated ersatz urine distillates across the ultraviolet and visible spectral regions. Rates of iodine loss have also been studied using single contaminant systems at equivalent concentrations. The predominant reactive species have been identified as thiourea and formic acid. Pseudo-first order rate constants have been determined for ersatz contaminant model mixtures and for individual reactive constituents. Second order rate constants have been determined for the bimolecular reaction of iodine and formic acid.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Thermal Pretreatment of Waste Hygiene Water

1991-07-01
911554
The thermal pretreatment of waste hygiene water was investigated as an approach to reduce the amount of energy required to maintain overall system microbial control. The study was conducted in two phases. The laboratory phase was a series of experiments to quantify the degree of microbial population reduction obtained when hygiene waste water and humidity condensate are heated through various thermal cycles. The laboratory phase also included inoculation of the combined wastewater with a thermophilic bacteria to provide a “worst-case” challenge of the thermal cycle being tested. The large scale system phase determined biofilm formation on the surfaces of a variety of materials with and without thermal cycling. Except for survival of the challenge thermophile and some naturally present thermophiles, thermal treatment above 85° C was successful in eradication of the microbial population in the combined hygiene wastewater and formed biofilms.
X