Refine Your Search

Search Results

Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

2005-04-11
2005-01-0083
Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Technical Paper

A Comparative Examination of the Resistance Spot Welding Behavior of Two Advanced High Strength Steels

2006-04-03
2006-01-1214
Advanced high-strength steels (AHSS) are a class of steels that have a minimum tensile strength of 500 MPa. The advantages of AHSS include superior formability and better crash energy absorption compared with conventional low-strength steels having a minimum tensile strength of 270 MPa. Several steels with a minimum tensile strength of 590 MPa have already found use in current vehicles, and others with minimum tensile strength up to 980 MPa have been qualified for use in future vehicle models. Two 780 MPa steels of interest are 780 DP (Dual Phase) and 780 TRIP (TRansformation Induced Plasticity). In this study, an examination was undertaken to compare the resistance spot-welding behavior of commercially produced 1.6 mm-thick, hot-dipped galvannealed, 780 MPa DP and TRIP steel sheet. Included in the study were evaluations of the weld lobes, weld microhardness, and the shear- and cross-tension strengths of resistance spot welds for the two steels.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

Advanced High Strength Steel Springback and Sidewall Curl Control Guideline

2005-04-11
2005-01-0499
Low carbon steels are being replaced by advanced high strength steels (AHSS) due to high demand of the future lighter weight vehicle, while still maintaining good or even better crash performance. However, sidewall curl and springback (section opening) have been found to increase as the strength of the sheet metal increases. Experiments have been conducted on the bending under tension (BUT) test to seek an effective control methodology regarding the applications of the advanced high strength steels (AHSS) in this study. Steels that were studied included a low carbon steel (DQSK), two dual phase steels (DP) and a transformation induced plasticity (TRIP) steel. Two different gauges of each AHSS were also included for a gauge sensitivity study. Different processing variables (four different diameter pins combining with five different back tension forces) were applied to the tests, and the springback angle and sidewall curl were measured for bend and bend-unbend areas of the specimen.
Journal Article

Advanced High-Strength Steel (AHSS) Performance Level Definitions and Targets

2018-04-03
2018-01-0629
A novel performance classification system has been developed for advanced high-strength steel (AHSS). This system considers intrinsic global and local formability parameters derived from standard uniaxial tension tests and is applicable to all current and future AHSS materials. The overall AHSS performance index (P.I.) is defined herein as the product of the ultimate tensile strength (UTS) and the formability index (F.I.), where F.I. is an intermediate strain value between the true uniform strain and the true fracture strain (TFS). Target P.I. values are defined for First Generation AHSS (GEN1), Improved First Generation AHSS (GEN1+), Third Generation AHSS (GEN3), and AHSS Future. Performance is further distinguished by local, balanced, and global formability characteristics and by relative yield strength (yield-to-tensile ratio). Additionally, the influence of tension test specimen geometry and fracture area measurement method on the TFS value was explored.
Technical Paper

An Experimental Study on Static and Fatigue Strengths of Resistance Spot Welds with Stack-up of Advanced High Strength Steels and Adhesive

2016-04-05
2016-01-0389
This paper describes static and fatigue behavior of resistance spot welds with the stack-up of conventional mild and advanced high strength steels, with and without adhesive, based on a set of lap shear and coach peel coupon tests. The coupons were fabricated following specified spot welding and adhesive schedules. The effects of similar and dissimilar steel grade sheet combinations in the joint configuration have been taken into account. Tensile strength of the steels used for the coupons, both as-received and after baked, and cross-section microstructure photographs are included. The spot weld SN relations between this study and the study by Auto/Steel Partnership are compared and discussed.
Technical Paper

Automotive Applications of Stretch Flange High Strength Steel

2003-03-03
2003-01-0690
A typical forming operation of chassis components (control arms, cross members, etc.) often involves edge stretching and/or hole expansion. As a result, the edge split is a common forming failure mode. To overcome this problem, Japanese and European automakers use stretch flange high strength (SFHS) steel due to its high strength and excellent edge stretch capability. Recently, SFHS steel has gained greater attention in North America and is currently being used for upper and lower control arm applications. This paper includes a discussion on general edge stretch issues in forming operations, including material data that demonstrate the higher stretch limit of SFHS steel as compared to other high strength steels. In a case study, SFHS steel is applied to a control arm and finite element analysis (FEA) is conducted to evaluate forming and structural performance.
Technical Paper

Axial Crash Testing of Advanced High Strength Steel Tubes

2005-04-11
2005-01-0836
Axial drop tower crash tests were carried out on a variety of 70-mm outer-diameter continuous-welded cylindrical steel tubes with several thicknesses (t). Ultimate tensile strength (UTS) ranged from less than 300 MPa for a fully stabilized steel to greater than 800 MPa for the advanced high strength steels (AHSS). In the tests, a 520-kg weight is dropped from a height of 3.3 meters to achieve impact velocities of 6.1 to 6.7 m/s (14 to 15 mph). Load and acceleration data are recorded as a function of time as the tube is crushed axially. The results show that, for a given impact condition, the peak and average crush loads of a steel tube is directly proportional to UTS × t2, while axial crush distance is inversely proportional to UTS × t2. As such, crash deformation can be reduced by substituting higher strength steels of the same thickness, or existing crash deformation can be maintained and weight reduction achieved by substituting higher strength steels with reduced thickness.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Technical Paper

Crash Performances of Advanced High Strength Steels of DP780, TRIP780 and DP980

2005-04-11
2005-01-0354
Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, have been increasingly used in automotive industry. One of the major advantages of AHSS is the excellent crash energy absorption capability. In this study, crash performances were evaluated for four AHSS including DP980, DP780, TRIP780 (780T), and TRIP590 (590T). Axial crush and bending crush tests were performed to evaluate the material crush performance. High strain rate tension test results for those materials were also presented. FEA analyses with parameter sensitivity studies were conducted including strain rate sensitivity effect, part geometry effects, welding models and forming effects. Good correlations between simulation and experimental data were achieved.
Technical Paper

Determination of Fracture Strain of Advanced High Strength Steels Using Digital Image Correlation in Combination with Thinning Measurement

2017-03-28
2017-01-0314
Fracture strain data provide essential information for material selection and serve as an important failure criterion in computer simulations of crash events. Traditionally, the fracture strain was measured by evaluating the thinning at fracture using tools such as a microscope or a point micrometer. In the recent decades, digital image correlation (DIC) has evolved as an advanced optical technique to record full-field strain history of materials during deformation. Using this technique, a complete set of the fracture strains (including major, minor, and thickness strains) can be approximated for the material. However, results directly obtained from the DIC can be dependent on the experiment setup and evaluation parameters, which potentially introduce errors to the reported values.
Technical Paper

Determination of the Forming Limit Curve Using Digital Image Correlation - Comparison of Different Approaches to Pinpoint the Onset of Localized Necking

2017-03-28
2017-01-0301
Digital image correlation (DIC) technique has been proved as a potent tool to determine the forming limit curve (FLC) of sheet metal. One of the major technical challenges using the DIC to generate FLC is to accurately pinpoint the onset of localized necking from the DIC data. In addition to the commonly applied ISO 12004-2 standard, a plethora of other DIC data analysis approaches have been developed and used by various users and researchers. In this study, different approaches, including spatial, temporal and hybrid approaches, have been practiced to determine the limit strains at the onset of localized necking. The formability of a 980GEN3 sheet steel was studied in this work using the Marciniak cup test coupled with a DIC system. The resulting forming limits determined by different approaches were compared. Strengths and limitations of each approach were discussed. In addition, the conventional finger-touch approach was excised using specimens with perceivable localized necks.
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Effects of AHSS Sheared Edge Conditions on Crash Energy Absorption in Component Bend Test

2018-04-03
2018-01-0113
Edge fracture of advanced high strength steels (AHSS) can occur in both the stamping process and the crash event. Fracture due to poor sheared edge conditions in the stamping process was reduced with a recently developed optimal shearing process for AHSS. Currently, the improvement in the energy absorption due to the improved edge condition during crashes performed under different loading conditions had not been closely verified. The purpose of this study is to design and build a miniature component of AHSS and a three-point bending test for investigating the influence of various conditions of the sheared edge on the energy absorption in crashes. AHSS including DP600, TRIP780, DP980 and DP1180 were selected in the study. A small channel component was developed and fabricated using DP980 to simulate key features of the B-pillar. The exposed non-constrained, as-sheared edge was subject to stretch bending forces in three-dimensional space during the three-point bending test.
Technical Paper

Effects of Material Bending and Hardening on Dynamic Dent Resistance

2005-04-11
2005-01-0832
In the first part of this paper, a previously published acceleration compensation methodology for dynamic dent testing [1] was successfully applied to calculate dent loads and applied energy in dynamic dent testing. This procedure was validated utilizing a hydraulic controlled dynamic dent tester on a number of low carbon and bake hardenable steels. In the second part of this study, the impact of strain rate on material bending and hardening in high-speed dynamic dent resistance testing was studied. Previous work [2] investigated these factors in static dent resistance. The procedure utilized in that research was further developed and adapted for high speed testing and used as a basis for a new, single loading incremental dynamic dent test. This new test was used to investigate the effects of material bending and hardening in high-speed dynamic dent resistance. Testing incorporated laboratory produced stretch dome panels with 2% biaxial strains as test specimens.
Journal Article

Effects of Nitrided and Chrome Plated Die Surface Roughness on Friction in Bending Under Tension

2019-04-02
2019-01-1093
Different die surface polish conditions result in a noticeable effect on material flow in stamping, which can lead to splitting, wrinkling, or other surface stretching issues associated with different friction conditions. These occurrences are not only limited to the non-coated dies, but also nitrided and chrome plated dies. To ensure quality control of the stamped parts, the die conditions corresponding to different polishing procedures need to be developed based on measurable parameters such as surface roughness (Ra). The intent of this study is to investigate the effects of nitrided and chrome plated die surface roughness on friction. The Bending-Under-Tension (BUT) test was conducted to simulate the stamping process due to the test’s versatility and flexibility in changing test parameters. The test involves moving sheet metal across a 3/8-inch diameter pin, which substitutes for a die surface. The pin can be modified by material, heat treatment, coating, and surface roughness.
Technical Paper

Experimental Study on Bendability of Advanced High Strength Steels

2024-04-09
2024-01-2860
Fracturing in a tight radius during bending is one of the major manufacturing issues in forming Advanced High Strength Steels (AHSS). The study investigated the bendability of AHSS under two forming conditions: bending with and without stretched over the die radius. The bendability was evaluated by conducting modified Bending Under Tension (BUT) test for stretch bending and 90o v bend test for bending without stretch. The study also examined the effect of material properties on the limiting bend ratio. Various strength high strength steels, range from 420 MPa to 1700 MPa tensile strength, were selected in the study. Results indicated that critical radius-to-thickness ratios between the two tests are different but correlated in a relationship which was depicted in the bendability diagram.
Technical Paper

Experimental and Numerical Studies of Crash Trigger Sensitivity in Frontal Impact

2005-04-11
2005-01-0355
Advanced High Strength Steels (AHSS) along with innovative design and manufacturing processes are effective ways to improve crash energy management. Crash trigger hole is another technology which can been used on front rails for controlling crash buckling mode, avoiding crash mode instability and minimizing variations in crash mode due to imperfections in materials, part geometry, manufacturing, and assembly processes etc. In this study, prototyped crash columns with different trigger hole shapes, sizes and locations were physically tested in frontal crash impact tests. A corresponding crash computer simulation model was then created to perform the correlation study. The testing data, such as crash force-displacement curves and dynamic crash modes, were used to verify the FEA crash model and to study the trigger sensitivity and effects on front rail crash performance.
Technical Paper

Failure Modeling of Adhesive Bonded Joints with Cohesive Elements

2017-03-28
2017-01-0351
Advanced high strength steels (AHSS) have been extensively used in the automotive industry for vehicle weight reduction. Although AHSS show better parent metal fatigue performance, the influence of material strength on spot weld fatigue is insignificant. To overcome this drawback, structural adhesive can been used along with spot weld to form weld-bond joints. These joints significantly improve spot weld fatigue performance and provide high joint stiffness enabling down-gauge of AHSS structures. However, modeling the adhesive joints using finite element methods is a challenge due to the nonlinear behavior of the material. In this study, the formulation of cohesive element based on the traction-separation constitutive law was applied to predict the initiation and propagation of the failure mode in the adhesively bonded joints for lap shear and coach peel specimens subjected to quasi-static loadings. The predicted load versus displacement relations correlated well with the test results.
X