Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Alternative Crankshaft Mechanisms and Kinetic Energy Recovery Systems for Improved Fuel Economy of Light Duty Vehicles

2011-09-13
2011-01-2191
The introduction of advanced internal combustion engine mechanisms and powertrains may improve the fuel conversion efficiency of an engine and thus reduce the amount of energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the induction stroke therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine. Results of vehicle driving cycle simulations of a light-duty gasoline vehicle with the advanced engine show dramatic improvements of fuel economy.
Technical Paper

Analysis of Design of Pure Ethanol Engines

2010-05-05
2010-01-1453
Ethanol, unlike petroleum, is a renewable resource that can be produced from agricultural feed stocks. Ethanol fuel is widely used by flex-fuel light vehicles in Brazil and as oxygenate to gasoline in the United States. Ethanol can be blended with gasoline in varying quantities up to pure ethanol (E100), and most modern gasoline engines well operate with mixtures of 10% ethanol (E10). E100 consumption in an engine is higher than for gasoline since the energy per unit volume of ethanol is lower than for gasoline. The higher octane number of ethanol may possibly allow increased power output and better fuel economy of pure ethanol engines vs. flexi-fuel engines. High compression ratio ethanol only vehicles possibly will have fuel efficiency equal to or greater than current gasoline engines.
Technical Paper

Coupling of a KERS Power Train and a Downsized 1.2TDI Diesel or a 1.6TDI-JI H2 Engine for Improved Fuel Economies in a Compact Car

2010-10-25
2010-01-2228
Recovery of braking energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Hybrid electric vehicles suffer the disadvantages of the four efficiency-reducing transformations in each regenerative braking cycle. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to almost double values of about 70% avoiding all four of the efficiency-reducing transformations from one form of energy to another and keeping the vehicle's energy in the same form as when the vehicle starts braking when the vehicle is back up to speed. With reference to the baseline configuration with a 1.6 liters engine and no recovery of kinetic energy, introduction of KERS reduces the fuel usage to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. The 1.6 liters Turbo Direct Injection (TDI) diesel engine without KERS uses 1.37 MJ per km of fuel energy, reducing with KERS to 1.13 MJ per km.
Technical Paper

Coupling of a KERS Powertrain and a 4 Litre Gasoline Engine for Improved Fuel Economy in a Full Size Car

2010-10-25
2010-01-2218
Improvements of vehicle fuel economy are being considered using a mechanically driven flywheel to reduce the amount of mechanical energy produced by the thermal engine recovering the vehicle kinetic energy during braking. A mechanical system having an overall efficiency over a full regenerative cycle of about 70%, about twice the efficiency of battery-based hybrids, is coupled to a naturally aspirated gasoline engine powering a full size sedan. Results of chassis dynamometer experiments and engine and vehicle simulations are used to evaluate the fuel benefits introducing a kinetic energy recovery system and downsizing of the engine. Preliminary results running the new European driving cycle (NEDC) show KERS may reduce fuel consumption by 25% without downsizing, and 33% with downsizing of the 4 litre engine to 3.3 litres.
Technical Paper

Modeling of Engine and Vehicle for a Compact Car with a Flywheel Based Kinetic Energy Recovery Systems and a High Efficiency Small Diesel Engine

2010-10-25
2010-01-2184
Recovery of kinetic energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to values of about 70%. An engine and vehicle model is developed to simulate the fuel economy of a compact car equipped with a TDI diesel engine and a KERS. Introduction of KERS reduces the fuel used by the 1.6L TDI engine to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. Downsizing the engine to 1.2 liters as permitted by the torque assistance by KERS, further reduces the fuel consumption to 3.04 liters per 100 km, corresponding to 79.2 g of CO₂ per km. These CO₂ values are 11% better than those of today's most fuel efficient hybrid electric vehicle.
Technical Paper

Performances of a Turbocharged E100 Engine with Direct Injection and Variable Valve Actuation

2010-10-25
2010-01-2154
Current flexi fuel gasoline and ethanol engines have brake efficiencies generally lower than a dedicated gasoline engines because of the constraints to accommodate a variable mixture of the two fuels. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger top brake efficiencies than gasoline, while variable valve actuation produces small penalties in efficiency changing the load.
Technical Paper

Use of Bio-Ethanol and Bio-Diesel The Key Solution for a More Sustainable Road Transport

2011-09-13
2011-01-2227
Life Cycle Analysis (LCA) of alternative transportation fuels clearly shows the advantages of reducing the use of non renewable fossil fuels vs. renewable biologic novel fuels to reduce the emissions of carbon dioxide. Being based on the natural recycle of carbon dioxide through the use of renewable energy sources, use of these renewable fuels do not imply depletion of natural resources and is therefore sustainable in the long term. Renewable fuels and advanced internal combustion engines and powertrains are the technologies that in addition to be the most likely to produce benefits in term of carbon balance and fossil fuel saving, are also those that unequivocally have the smallest ecological footprint considering all the environmental implication of transportation technologies, with all the other more exotic solutions having much higher environmental costs to produce, use and dispose of alternative transportation technologies.
Technical Paper

Use of Variable Valve Actuation to Control the Load in a Direct Injection, Turbocharged, Spark-Ignition Engine

2010-10-25
2010-01-2225
Downsizing and Turbo Charging (TC) and Direct Injection (DI) may be combined with Variable Valve Actuation (VVA) to better deal with the challenges of fuel economy enhancement. VVA may control the load without throttle; control the valve directly and quickly; optimize combustion, produce large volumetric efficiency. Benefits lower fuel consumption, lower emissions and better performance and fun to drive. The paper presents an engine model of a 1.6 litre TDI VVA engine specifically designed to run pure ethanol, with computed engine maps for brake specific fuel consumption and efficiency. The paper also presents driving cycle results obtained with a vehicle model for a passenger car powered by this engine and a traditional naturally aspirated gasoline engine. Preliminary results of the VVA system coupled with downsizing, turbo charging and Direct Injection permits significant driving cycle fuel economies.
X