Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

A Sliding Mode Observer for Vehicle Slip Angle and Tire Force Estimation

In this paper, a sliding mode observer for estimating vehicle slip angle and tire forces is developed. Firstly, the sliding mode observer design approach is presented. A system damping is included in the sliding mode observer to speed the observer convergence and to decrease the observer chattering. Secondly, the sliding mode observer for vehicle states is developed based on a 7 DOF embedded vehicle model with a nonlinear tire model ‘UniTire’. In addition, since the tire lateral stiffness is sensitive to the vertical load, the load transfers are considered in the embedded model with a set of algebraic equations. Finally, a simulation evaluation of the proposed sliding mode observer is conducted on a validated 14 DOF vehicle model. The simulation results show the model outputs closely match the estimations by the proposed sliding mode observer.
Technical Paper

Developmental Driver Model for Long Vehicles Based on Preview-Follower Theory

A long vehicle is more difficult to drive than a short one, but the mechanism of this phenomenon is still ambiguous. This paper will devote main effort to elaborate this phenomenon based on the theory of preview-follower driver model. Drivers always hope that the vehicle center can travel according to a predetermined trajectory. However, there is often a deviation between the vehicle center predicted by the driver and the actual center. As for this phenomenon, a conception of driver preview eccentricity is proposed. In order to analyze the influence of the proposed conception on vehicle driving track, a multi-axle steering vehicle model is built and some basic expressions of important parameters are deduced from this model firstly. Then, the developmental driver model with the factor of preview eccentricity based on preview-follower theory is established in the state of low velocity quasi-static. Subsequently, this model for long vehicles is extended to a dynamic driver model.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Journal Article

Physical Modeling of Shock Absorber Using Large Deflection Theory

In this paper, a shock absorber physical model is developed. Firstly, a rebound valve model which is based on its structure parameters is built through using the large deflection theory. The von Karman equations are introduced to discover the physical relationships between the load and the deflection of valve discs. An analytical solution of the von Karman equations is then deducted via perturbation method. Secondly, the flow equations and the pressure equations of the shock absorber operating are investigated. The relationship between fluid flow rate and pressure drop of rebound valve is analyzed based on the analytical solution of valve discs deflection. Thirdly, an inter-iterative process of flow rate and pressure drop is employed in order to adequately consider the influence of fluid flow on damping force. Finally, the physical model is validated by comparing the experimental data with the simulation output.