Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Design and Position Control of a Novel Electric Brake Booster

2018-04-03
2018-01-0812
The electric vehicles and the intelligent vehicles put forward to new requirements for the brake system, such as the vacuum-independent braking, automatic or active braking, and regenerative braking, which are the key link for the vehicle’s safety and economy. However, the traditional vacuum brake booster is no longer able to meet these requirements. In this article, a novel integrated power-assisted actuator of brake system is proposed to satisfy the brake system requirements of the electric vehicles and intelligent vehicles. The electronic brake booster system is designed to achieve the function of boosting pedal force of driver, being independent on vacuum source, supplying autonomous or active braking. It is mainly composed of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, and a reaction disk. The scheme design and power-assisted braking control are the key for the electronic actuator.
Journal Article

Design of Anti-lock Braking System Based on Regenerative Braking for Distributed Drive Electric Vehicle

2018-04-03
2018-01-0816
In this article, the regenerative braking system is designed, which can realize the torque allocation between electric braking and hydraulic braking, where the cost function designed in this article considers factors of braking torque following effect, energy regenerative power, and hydraulic braking consumed power. In addition, a complete anti-lock braking system (ABS) is designed, which is based on regenerative braking. With the optimal slip ratio as control target, target wheel speed, control wheel speed, braking torque control strategy, and enable/disenable control logic of ABS are determined. By MATLAB/Simulink-DYNA4 co-simulation and real vehicle test, the feasibility and applicability of ABS based on regenerative braking are verified, under the condition of small severity of braking.
Technical Paper

Modelling and Validation for an Electro-Hydraulic Braking System Equipped with the Electro-Mechanical Booster

2018-04-03
2018-01-0828
The intelligent and electric vehicles are the future of vehicle technique. The development of intelligent and electric vehicles also promotes new requirements to many traditional chassis subsystems, including traditional braking system equipped with vacuum boosters. The Electro-Mechanical Booster is an applicable substitute of traditional vacuum booster for future intelligent and electric vehicles. It is independent of engine vacuum source, and can be combined with electric regenerative braking. A complete system model is necessary for system analysis and algorithm developing. For this purpose, the modeling of electro-hydraulic braking system is necessary. In this paper, a detailed electro-hydraulic braking system model is studied. The system consists of an electro-mechanical booster and hydraulic braking system. The electro-mechanical booster which mainly contains a permanent magnet synchronous motor (PMSM) and a set of transmission mechanism is the critical component.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Technical Paper

Pressure Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2018-04-03
2018-01-0829
The Electro-Mechanical Brake Booster (Ebooster) is a critical component of the novel brake system for electric intelligent vehicles. It is independent of engine vacuum source, provides powerful active brake performance and can be combined with electric regenerative braking. In this paper, a brake control algorithm for hydraulic brake system equipped with an Ebooster is proposed. First, the configuration of the Ebooster is introduced and the system model including the permanent magnet synchronous motor (PMSM) and hydraulic brake system is established by Matlab/Simulink. Second, a Four-closed-loop algorithm is introduced for accurate active brake pressure control. Finally, according to the requirement of different brake force, series of simulations are carried out under active braking condition. The results show that the control algorithm introduced in this paper can ensure the brake hydraulic pressure tracking a target value precisely and show a good control performance.
Technical Paper

Regenerative Braking Pedal Decoupling Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2019-04-02
2019-01-1108
Electrification and intelligence are the important development directions of vehicle techniques. The Electro-Mechanical Brake Booster (Ebooster) as a brake booster which is powered by a motor, can be used to replace the traditional vacuum booster. Ebooster not only improves the intelligence level of vehicle braking and significantly improves the braking performance, but also adapts to the application in new energy vehicles and facilitates coordinated regenerative braking. However, Ebooster cannot complete pedal decoupling independently. It needs to cooperate with other components to realize pedal decoupling. In this paper, a pedal decoupling control algorithm for regenerative brake, which is based on the coordination control of Ebooster and ESP, is proposed. First, regenerative braking strategy is designed to distribute the hydraulic brake force and regenerative braking force.
Technical Paper

Study on the Algorithm of Active Pressurization Control of Regenerative Braking System in Pure Electric Vehicle

2015-09-27
2015-01-2708
During the vehicle braking, the Regenerative braking system (RBS) transforms the kinetic energy into electric power, storing it in the power sources. To secure the baking process, it is required to use hydraulic braking pressure to coordinately compensate the regenerative braking pressure. The traditional hydraulic pressure control algorithm which is used in regenerative braking system coordinated control has obvious laddering effect in braking. Unit control cycle pressure deviations seriously affect the comfort and the braking feeling on the vehicle.
X