Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Comparative Analysis of Direct Injection into a Pressurized Chamber Using an Automatic Image Treatment Methodology

2016-10-25
2016-36-0163
A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
Technical Paper

A Computational Methodology for Studying Sprays Characteristics of a Gasoline Direct Injection Injector

2012-10-02
2012-36-0362
The focus of this study was to create a methodology to evaluate spray characteristics in a gasoline direct injection injector by means of an automatic process. Computational codes were used to get information about cone angle and breakup length based on images got from injection process. A mathematical function was created to locate the boundaries of the spray and the cone angle was studied as the angle of arcs situated within these boundaries. The centre of the arc was located on the orifice of the injector and a value of angle was associated with several distances from orifice. The breakup length was associated as a distance from the orifice of an arc formed by a group of pixels with the maximum standard deviation related to the values of these pixels. The velocity field was studied by the Particle Image Velocimetry technique. Three fluids were tested at this work: water, ethanol and gasoline.
Technical Paper

Analysis of Back Pressure Variation on Macroscopics Characteristics of Ethanol E100 Spray

2017-11-07
2017-36-0272
The growing demand for more efficient and less polluting engines has lead the scientific community to further develop the road map engine technologies, including direct fuel injection. Direct injection research demands the investigation of spray formation and its characteristics. The present work performs the characterization of the macroscopic parameters of ethanol sprays (E100) produced with a fuel gauge pressure of 80 bar and gauge back pressures of 0, 5 and 10 bar. The sprays analysis was performed using high speed filming by means of Shadowgraph technique. Computational routines of matrix analysis were applied to measure the spray cone angles, penetration and penetration rate. The spray visualization demanded an experimental apparatus composed of a pressurized cylinder with nitrogen, a fuel tank as pressure vessel, an injection driver equipped with a peak and hold module controlled by a MoteC M84, a Phantom V7.3 high speed camera and LEDs for illumination.
Technical Paper

Analysis of ethanol spray behavior into a Single Cylinder Optical Research Engine

2020-01-13
2019-36-0223
The work focuses on studying ethanol spray behavior injected directly inside a spark ignited internal combustion engine in the compression stroke. An experimental procedure for measuring spray penetration and spray overall cone angle produced by a multi-hole direct injector was developed by means of computational codes written in Matlab environment for working with images of spray injections and to acquire calculated results in an automatic way. The shadowgraph technique with back continuous illumination associated with a high speed recording image process was used in a single cylinder optical research engine for acquiring images of Brazilian ethanol fuel injected at 120° before the top dead center of compression stroke. The process of spray injections occurred with engine speeds of 1000 rpm, 2000 rpm and 3000 rpm. The results showed that spray penetrations decrease and spray cone angle increase when the engine speed is raised.
Technical Paper

Combustion analysis in a SI engine with homogeneous and stratified pre-chamber system

2018-09-03
2018-36-0112
Extensive studies of pre-chamber ignition systems in internal combustion engines have proven its effectiveness in reduction of fuel consumption and improvement in several combustion parameters. Considering the different types of pre-chamber configurations, this paper aims to compare the combustion in a SI engine with both homogeneous and stratified pre-chamber ignition systems. To achieve this objective a system with the ability to control the hydrogen injection in the pre-chamber was built. This system was installed in a multi-cylinder Ford Sigma 1.6L engine and tested in a dynamometric room. Tests consisted in imposing a constant rotation and IMEP to test three conditions: standard spark ignition, pre-chamber ignition system without fuel injection (homogenous) and with hydrogen injection (stratified). It was possible to identify that with the use of pre-chamber ignition system there is a reduction in specific fuel consumption and in the combustion duration.
Technical Paper

Commercial Vehicle Comfort under Human Vibration Perspective

2011-10-04
2011-36-0269
This paper discusses the importance of vibration transmitted from the ground to the driver from the perspective of human whole-body vibration (WBV). The scope of analysis is to compare the main vehicle frequencies with those important from the human vibration health and comfort point of view. That was performed by mapping the vibration transmissibility present in different sub sections of the vehicle. The first is the transmissibility between the axles and the chassis rail, the following between the chassis rail and the cabin. The last would be between the cabin and the drivers' seat, although that was not possible from the acquisition point of view. The vehicles measured have mechanical suspension and elastomeric cabin coupling. It is known that all suspension systems in vehicle are highly nonlinear, although here linear dynamic analysis methods were used.
Technical Paper

Corrosion Resistance of Automotive Ecological Fuel Tanks in Contact With Hydrated Ethanol Fuel

2012-10-02
2012-36-0387
For metallic tanks in contact with aqueous solution, it is always observed the presence of electrochemical corrosion. This process can cause both economic and environmental damage. In the automotive industry, fuel tanks systems have been studied in order to propose new materials to replace the plastic tanks or tanks with metallic coatings. Plastic tanks have the disadvantage of not being recyclable. In the other hand, for metallic coated tanks, tin is used as a coat material and, for this reason, the external tank side must be painted, making its productive process more expensive and generating higher amount of waste. Nowadays, organic-metallic coated tanks, in which, nickel and aluminum are the metals present, can be found. These coatings show potential application; because they do not use heavy metals in their composition and they do not require external painting, allowing a lower production cost.
Technical Paper

Experimental Study of Spray Pattern, Tip Penetration and Velocity Profiles of a Gasoline Direct Injection Injector Using High Speed Image Recording and Particle Image Velocimetry

2013-10-07
2013-36-0553
This work shows procedures for analyzing sprays produced by a direct injection injector. The parameters studied were tip penetration, spray pattern, cone angles and velocity profiles. Two different experimental procedures were applied. The first one to get knowledge of the initial stage of injection consisted in recording images in 4000 Hz. With the data obtained, the penetrations and penetration rates were evaluated. The second experimental procedure consisted of using the Particle Image Velocimetry technique to get images and velocity data for getting knowledge of spray pattern, external and internal cone angle and velocity profiles of the spray fully developed. Gasoline and ethanol were the two fluids tested on the experiments. The results showed larger cone angles for gasoline, linear decreasing behavior for velocities on the linear velocity profiles and a transient stage for the magnitude of the velocities in the initial stage of injection.
Technical Paper

Measuring and Comparing the Ignition Delay Times of Diesel, Ethanol Additive and Biodiesel Using a Shock Tube

2014-09-30
2014-36-0187
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of diesel, biodiesel and ethanol doped with different levels of additive enhancer cetane number. The results are compared with the ignition delay times measured for other authors.
Technical Paper

Performance Study of a Multifuel Engine Operating Simultaneously with CNG and Ethanol in Various Proportions

2008-10-07
2008-36-0284
The technological development of automotive engines is focused on alternative energy sources and optimized use of conventional fuels. The current flexible engines in Brazil can operate with gasohol and ethanol blends in any proportion, but the flexibility is restricted to liquid fuels. The present investigation consists on the use of electronic injection systems for ethanol and for CNG, allowing the use of these fuels simultaneously. The objective of this work is to determine the best proportion of CNG-ethanol mixture in order to maximize the use of the natural gas, fuel which offers the lowest BSFC on conventional SI engines. The low volumetric efficiency inherent in the use of CNG is compensated by the injection of a small quantity of ethanol. The latent heat of vaporization of the alcohol is used to take heat from the intake air and increase its mass, taking advantage from the high latent heat of vaporization of the ethanol and the low BSFC of the CNG.
Technical Paper

Shock Tube for Analysis of Combustion of Biofuels

2013-10-07
2013-36-0300
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, and the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of ethanol doped with different levels of additive enhancer cetane number. The results are compared with the delays measured for the ignition diesel and biodiesel.
X