Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine

2012-10-23
2012-32-0095
During the last years the deep re-examination of the engine design for lowering engine emissions involved two-wheel vehicles too. The IC engine overall efficiency plays a fundamental role in determining final raw emissions. From this point of view, the optimization of the in-cylinder flow organization is mandatory. In detail, in SI engines the generation of a coherent tumble vortex having dimensions comparable to the engine stroke could be of primary importance to extend the engines' ignition limits toward the field of the dilute/lean mixtures. For motorbike and motor scooter applications, the optimization of the tumble generation is considered an effective way to improve the combustion system efficiency and to lower emissions, considering also that the two-wheels layout represents an obstacle in adopting the advanced post-treatment concepts designed for automotive applications.
Technical Paper

CFD Analysis of a Two-Stroke Air Cooled Engine Designed for Handheld Products

2014-11-11
2014-32-0006
Still today, two-stroke engine layout is characterized by a wide share on the market thanks to its simpler construction that allows to reduce production and maintenance costs respecting the four-stroke engine. Two of the main application areas for the two-stroke engines are on small motorbikes and on handheld machines like chainsaws, brush cutters, and blowers. In both these application areas, two-stroke engines are generally equipped by a carburettor to provide the air/fuel mixture formation while the engine cooling is assured by forcing an air stream all around the engine head and cylinder surfaces. Focusing the attention on the two-stroke air-cooling system, it is not easy to assure its effectiveness all around the cylinder surface because the air flow easily separates from the cylinder walls producing local hot-spots on the cylinder itself. This problem can be bounded only by the optimization of the cylinder fin design placed externally to the cylinder surface.
Technical Paper

Development of a 0D Model Starting from Different RANS CFD Tumble Flow Fields in Order to Predict the Turbulence Evolution at Ignition Timing

2014-11-11
2014-32-0048
Faster combustion and lower cycle-to-cycle variability are mandatory tasks for naturally aspirated engines to reduce emission levels and to increase engine efficiency. The promotion of a stable and coherent tumble structure is considered as one of the best way to promote the in-cylinder turbulence and therefore the combustion velocity. During the compression stroke the tumble vortex is deformed, accelerated and its breakdown in smaller eddies leads to the turbulence enhancement process. The prediction of the final level of turbulence for a particular engine operating point is crucial during the engine design process because it represents a practical comparative means for different engine solutions. The tumble ratio parameter value represents a first step toward the evaluation of the turbulence level at ignition time, but it has an intrinsic limit.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution

2012-04-16
2012-01-0460
The overall performance of direct injection (DI) engines is strictly correlated to the fuel liquid spray evolution into the cylinder volume. More in detail, spray behavior can drastically affect mixture formation, combustion efficiency, cycle to cycle engine variability, soot amount, and lubricant contamination. For this reason, in DI engine an accurate numerical reproduction of the spray behavior is mandatory. In order to improve the spray simulation accuracy, authors defined a new atomization model based on experimental evidences about ligament and droplet formations from a turbulent liquid jet surface. The proposed atomization approach was based on the assumption that the droplet stripping in a turbulent liquid jet is mainly linked to ligament formations. Reynolds-averaged Navier Stokes (RANS) simulation method was adopted for the continuum phase while the liquid discrete phase is managed by Lagrangian approach.
Technical Paper

Superheated Sprays of Alternative Fuels for Direct Injection Engines

2012-04-16
2012-01-1261
Alternative and oxygenated fuels are nowadays being studied in order to increase engine efficiency and reduce exhaust emissions and also to limit the automotive industry's economical dependency from crude oil. These fuels are considered more ecological compared to hydrocarbons because they are obtained using renewable sources. Fuels like anhydrous/hydrous ethanol, methanol or alcohol/gasoline blends which are injected in liquid form must vaporize quickly, especially in direct injection engines, therefore their volatility is a very important factor and strongly depends on thermodynamic conditions and chemical properties. When a multi-component fuel blend is injected into a low pressure environment below its saturation pressure, a rapid boiling of the most volatile component triggers a thermodynamic atomization mechanism. These kinds of sprays show smaller droplets and lower penetration compared to mechanical break up.
Technical Paper

The Effect of the Throttle Valve Rotational Direction on the Tumble Motion at Different Partial Load Conditions

2015-04-14
2015-01-0380
In PFI and GDI engines the tumble motion is the most important charge motion for enhancing the in-cylinder turbulence level at ignition time close to the spark plug position. In the open literature different studies were reported on the tumble motion, experimental and not. In the present paper the research activity on the tumble generation at partial load and very partial load conditions was presented. The added value of the analysis was the study of the effect of the throttle valve rotational direction on the tumble motion and the final level of turbulence at the ignition time close to the spark plug location. The focus was to determine if the throttle rotational direction was crucial for the tumble ratio and the turbulence level. The analyzed engine was a PFI 4-valves motorcycle engine. The engine geometry was formed by the intake duct and the cylinder. The CFD code was FIRE AVL code 2013.1.
X