Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Assessment of a Numerical Methodology for Large Eddy Simulation of ICE Wall Bounded Non-Reactive Flows

2007-10-29
2007-01-4145
The increasing of the overall engine performance requires the investigation of the unsteady engine phenomena affecting intake air flow and the air-fuel mixing process. The “standard” RANS methodology often doesn't allow one to achieve a qualitative and quantitative accurate prediction of these phenomena. The aim of this paper is to show the potential and the limits of LES numerical technique in the simulation of actual IC engine flows and to assess the influence of some basic parameters on the LES simulation results. The paper introduces the use of a merit parameter suggested by Pope for evaluating the quality of the LES solution. The CFD code used is Fluent v6.2 and two basic test cases have been simulated. The first one is the flow over a backward facing step in order to perform a preliminary parametric numerical analysis. A one-equation dynamic subgrid-scales turbulence model is used.
Technical Paper

Comparison of the Homogeneous Relaxation Model and a Rayleigh Plesset Cavitation Model in Predicting the Cavitating Flow Through Various Injector Hole Shapes

2013-04-08
2013-01-1613
Two cavitation models are evaluated based on their ability to reproduce the development of cavitation experimentally observed by Winklhofer et al. inside injector hole geometries. The first is Singhal's model, derived from a reduced form of the Rayleigh-Plesset equation, implemented in the commercial CFD package Fluent. The second is the homogeneous relaxation model, a continuum model that uses an empirical timescale to reproduce a range of vaporization mechanisms, implemented in the OpenFOAM framework. Previous work by Neroorkar et al. validated the homogeneous relaxation model for one of the nozzle geometries tested by Winklhofer et al. The present work extends that validation to all the three geometries considered by Winklhofer et al in order to compare the models' ability to capture the effects of nozzle convergence.
Technical Paper

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-09-09
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the SA required to reach a combustion phase target, considering injected water mass effects. The model has been expanded to directly consider air-to-fuel ratio variation effects on combustion phasing, and the same controller structure could integrate other variables that influence 50 percent of Mass Fraction Burned angular position (MFB50), such as EGR.
Technical Paper

Fast Prototyping of a Racing Diesel Engine Control System

2008-12-02
2008-01-2942
This paper shows how Rapid Control Prototyping (RCP) and Computational Fluid Dynamics (CFD) techniques have been applied to design and implement an engine control system for a common rail diesel engine. The project aim is to setup a high performance engine in order to participate to the Italian Tractor Pulling Championship (Prostock category). The original engine is a John Deere 6081 Tier2 model, already equipped with a common rail system. Engine performance is substantially determined by the control system, which is in charge of limiting engine speed, boost pressure and Air to Fuel Ratio (AFR). Given that typically the information and equipment needed to change control parameters are not accessible to customers, the first step of the project has been to replace the original control system, while maintaining injectors and pumps. This solution can guarantee the best performance, but it requires time to design the new control system, both in terms of hardware and software.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Rapid Prototyping as a Tool to Support Wind Tunnel Testing of Unconventional Unmanned Airships

2013-09-17
2013-01-2193
Scaled models are often used to check the aerodynamic performance of full scale aircraft and airship concepts, which have gone through a conceptual and preliminary design process. Results from these tests can be quite useful to improve the design of unconventional airships whose aerodynamics might be quite different from classical configurations. Once the airship geometry has been defined, testing is required to acquire aerodynamic data necessary to implement the mathematical model of the airship needed by the flight control system to develop full autonomous capabilities. Rapid prototyping has the great potential of playing a beneficial role in unconventional autonomous airship design similarly to the success obtained in the design process of conventional aircrafts.
Technical Paper

Review of Combustion Indexes Remote Sensing Applied to Different Combustion Types

2019-04-02
2019-01-1132
This paper summarizes the main studies carried out by the authors for the development of indexes for remote combustion sensing applicable to different combustion types, i.e. conventional gasoline and diesel combustions, diesel PCCI and dual fuel gasoline-diesel RCCI. It is well-known that the continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at complying with upcoming increasingly stringent regulations throughout the world, both for pollutants and CO2 emissions. Performing an efficient combustion control is crucial for efficiency increase and pollutant emissions reduction. Over the past years, the authors of this paper have developed several techniques to estimate the most important combustion indexes for combustion control, without using additional cylinder pressure sensors but only using the engine speed sensor (always available on board) and accelerometers (usually available on-board for gasoline engines).
X