Refine Your Search


Search Results

Viewing 1 to 18 of 18
Technical Paper

An Experimental Investigation of In-Cylinder Processes Under Dual-Injection Conditions in a DI Diesel Engine

Fuel-injection schedules that use two injection events per cycle (“dual-injection” approaches) have the potential to simultaneously attenuate engine-out soot and NOx emissions. The extent to which these benefits are due to enhanced mixing, low-temperature combustion modes, altered combustion phasing, or other factors is not fully understood. A traditional single-injection, an early-injection-only, and two dual-injection cases are studied using a suite of imaging diagnostics including spray visualization, natural luminosity imaging, and planar laser-induced fluorescence (PLIF) imaging of nitric oxide (NO). These data, coupled with heat-release and efficiency analyses, are used to enhance understanding of the in-cylinder processes that lead to the observed emissions reductions.
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
Technical Paper

Biomechanical Realism Versus Algorithmic Efficiency: A Trade-off in Human Motion Simulation Modeling

The purpose this paper is to delineate why there exists a trade-off between biomechanical realism and algorithmic efficiency for human motion simulation models, and to illustrate how empirical human movement data and findings can be integrated with novel modeling techniques to overcome such a realism-efficiency tradeoff. We first review three major classes of biomechanical models for human motion simulation. The review of these models is woven together by a common fundamental problem of redundancy—kinematic and/or muscle redundancy. We describe how this problem is resolved in each class of models, and unveil how the trade-off arises, that is, how the computational demand associated with solving the problem is amplified as a model evolves from small scale to large scale, or from less realism to more realism.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Developing Flow Map for Two-Phase R134a after Expansion Device

This paper presents a mapping of developing adiabatic two-phase R134a flow directly after the expansion valve until the flow is “fully developed” in a 15.3mm inner diameter pipe. Flow characteristics of separation distance, flow type in the homogenous region, void fraction as a function of tube length, and fully developed flow region void fraction and regime were quantified and described.
Technical Paper

Dynamics and Roll Stability of a Loaded Class 8 Tractor-Livestock Semi-Trailer

The transporting of live cattle involves the use of Class 8 tractors and livestock semi-trailers for transportation from farms and feedlots to processing plants. This travel may include unimproved roads, local streets, two lane highways, as well as interstate highways. Typically, cattle are compartmentalized in a “double deck” fashion as it provides utility and comports with size and weight limits for commercial Class 8 vehicles. Concern has been expressed for the effect of cattle movement upon the dynamic performance of the loaded Class 8 tractor-livestock trailer assembly. Loading guidelines exist for cattle that attempt to prevent injury or debilitation during transit, and literature exists on the orientation and some kinematics of loaded cattle. Considerable literature exists on the effect of liquid slosh in tankers and swinging beef carcasses suspended from hooks in refrigerated van trailers on the dynamic response and roll stability of those vehicles.
Technical Paper

Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine:Broadband Natural Luminosity Imaging

The detailed mechanisms by which oxygenated diesel fuels reduce engine-out soot emissions are not well understood. The literature contains conflicting results as to whether a fuel's overall oxygen content is the only important parameter in determining its soot-reduction potential, or if oxygenate molecular structure or other variables also play significant roles. To begin to resolve this controversy, experiments were conducted at a 1200-rpm, moderate-load operating condition using a modern-technology, 4-stroke, heavy-duty DI diesel engine with optical access. Images of broadband natural luminosity (i.e., light emission without spectral filtering) from the combustion chamber, coupled with heat-release and efficiency analyses, are presented for three test-fuels. One test-fuel (denoted GE80) was oxygenated with tri-propylene glycol methyl ether; the second (denoted BM88) was oxygenated with di-butyl maleate. The overall oxygen contents of these two fuels were matched at 26% by weight.
Technical Paper

Examining the Trade-Off Between Automobile Acceleration Performance and Fuel Economy

A method for making value tradeoff decisions between fuel economy and acceleration performance is demonstrated. Attribute value as defined by the S-Model Theory of Quality [1,2] is measured for the attributes of fuel economy and acceleration performance through a vehicle driving clinic. Willingness-to-pay values are found for the attributes at several different levels. The willingness-to-pay values are then used to refine the empirical and economic value curves previously determined for those attributes.
Technical Paper

Feasibility of Modifying an Existing Semi-Trailer Air Suspension Into an Anti-Rollover System

This paper examines the feasibility of modifying an existing semi-trailer air suspension system to function as an anti-rollover system in addition to its normal suspension operation. The semi-trailer model used is a dynamic, two-dimensional system. The anti-rollover system controller is formulated using projective control theory. All other factors being equal, simulations show that use of the modified suspension system decreases the weight shift when the semi-trailer undergoes lateral acceleration. By decreasing weight shift, the modified suspension system decreases the possibility of rollover.
Journal Article

Flow Visualization and Experimental Measurement of Compressor Oil Separator

This article presents basic separation mechanisms with coalescing/impinging separators studied as the add-on to current popular centrifugal designs. The coalescence and impingement of oil on wire mesh and wave-plates are visualized and tested to investigate the impact of geometry and flow conditions on oil separation efficiency. Re-entrainment phenomenon is explained based on the mass balance. Oil mist flow at the swashplate reciprocating compressor discharge is quantified by video processing method to provide detailed information of the oil droplets. The physics behind oil separator is illustrated by visualization and measurement in this study, which gives useful guidelines for oil separator design and operation. The flow visualization shows the details of oil passing through different oil separation structures. Videos are quantified to provide information like droplet size distribution and liquid volume fraction.
Technical Paper

Iced-Airfoil and Wing Aerodynamics

Past research on airfoil and wing aerodynamics in icing are reviewed. This review emphasizes the periods after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This section identifies four classes of ice accretions: roughness, rime ice, horn ice, and spanwise ridge ice. In these sections the key flowfield features such as flowfield separation and reattachment are reviewed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are briefly summarized.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Methane Jet Penetration in a Direct-Injection Natural Gas Engine

A direct-injection natural gas (DING) engine was modified for optical access to allow the use of laser diagnostic techniques to measure species concentrations and temperatures within the cylinder. The injection and mixing processes were examined using planar laser-induced fluorescence (PLIF) of acetone-seeded natural gas to obtain qualitative maps of the fuel/air ratio. Initial acetone PLIF images were acquired in a quiescent combustion chamber with the piston locked in a position corresponding to 90° BTDC. A series of single shot images acquired in 0.1 ms intervals was used to measure the progression of one of the fuel jets across the cylinder. Cylinder pressures as high as 2 MPa were used to match the in-cylinder density during injection in a firing engine. Subsequent images were acquired in a motoring engine at 600 rpm with injections starting at 30, 20, and 15° BTDC in 0.5 crank angle degree increments.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.
Technical Paper

Modeling of Spray Vaporization and Air-Fuel Mixing in Gasoline Direct-Injection Engines

A numerical investigation of air-fuel mixing in gasoline direct-injection (GDI) engines is presented in this paper. The primary goal of this study is to demonstrate the importance of fuel representation. In the past studies, fuel has been usually modeled as a single component substance. However, most fuels are mixtures of hydrocarbons with diverse boiling points, resulting in mixture vaporization behavior substantially different from single-component behavior. This study presents a newly developed multicomponent vaporization model, which takes into account important mechanisms such as preferential vaporization, internal circulation, surface regression, and non-ideal behavior in high-pressure environments. A sheet spray atomization model was also used to calculate the disintegration of the liquid sheet and the breakup of the subsequent droplets. The results of a single-component fuel representation and a multicomponent fuel representation were compared.
Technical Paper

Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine

A 2.5L, V-6, port-injected, spark-ignition engine was modified for optical access by separating the head from the block and installing a Bowditch extended piston with a fused-silica top and a fused-silica liner in one of the cylinders. Two heads were employed in the study. One produced swirl and permitted modulation of the swirl level, and another produced a tumbling flow in the cylinder. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. The exciplex fluorescence technique was calibrated in a separate cell where careful control of mixture composition, temperature and pressure was possible. The results show that large-scale motion induced during intake is critical for good mixing during the intake and compression strokes.
Technical Paper

Oversteer/Understeer Characteristics of a Locked Differential

The type of differential used in a vehicle has an important and often-neglected effect on handling performance. This is particularly important in racing applications, such as in IndyCar racing, in which the type of differential chosen depends on the course being raced (superspeedway ovals, short ovals, temporary street courses and permanent road courses). In the present work, we examine the effect of a locked rear differential on oversteer/understeer behavior. Using a linear tire model, it is shown that employing a locked differential adds a constant understeer offset to the steering wheel angle (SWA) -v- lateral acceleration vehicle signature. A computer simulation of steady-state cornering behavior showed that the actual effect is much more complicated, and is strongly influenced by static weight distribution, front/rear roll couple distribution, available traction and the radius of the turn being negotiated.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.