Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Digital Electronic Solution to Piston Telemetry

2000-06-19
2000-01-2032
This paper describes the design, development and operation of a digital electronic piston telemetry system. A feature is the multiplicity of operating modes, including two-way communication. The system has been demonstrated to work with thermocouples and accelerometers embedded in the piston of a very small engine at speeds of over 2000rev/m. The piston-mounted components can be fitted to a piston as small as 80mm diameter, and the size is reduced with every modification as smaller more powerful electronic components become available. Typical results are quoted in the paper
Technical Paper

Analysis of Various Driving Parameters and Emissions for Passenger Cars Driven With and Without Stops at Intersections under Different Test Cycles

2012-04-16
2012-01-0880
Different driving test cycles, the Leeds-West Park (LWP) loop and the Leeds-High Park (LHP) or HPL-A and B (Leeds-Hyde Park Loop-A or B, hereafter referred as HPL-A or B cycle) loop were selected for this urban intersection research and results are presented in this study. Different emissions-compliant petrol passenger cars (EURO 1, 2, 3 and 4) were compared for their real-world emissions. A reasonable distance of steady state speed was needed and for the analysis made in this paper were chosen vehicle speeds at ~20, ~30 and ~40 km/h. Specific spot of periods of driving at the speeds mentioned above were identified, then the starting and ending point was found and the total emissions in g for that period divided by the distance was calculated. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle.
Technical Paper

Cold Start SI Passenger Car Emissions from Real World Urban Congested Traffic

2015-04-14
2015-01-1064
The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR for speciated gaseous emission measurements, a differential GPS for travel profiles, thermocouples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable cold start to occur into congested traffic, typical of the situation of people living alongside congested roads into a large city. The cold start was monitored through temperature measurements of the TWC front and rear face temperatures and lubricating oil temperatures. The emissions are presented to the end of the cold start, defined when the downstream TWC face temperature is hotter than the front face which occurred at ∼350-400oC. Journeys at various times of the day were conducted to investigate traffic flow impacts on the cold start.
Technical Paper

Combustion and Emissions Performance of Simulated Syngas/Diesel Dual Fuels in a CI Engine

2022-08-30
2022-01-1051
Small diesel engines are a common primer for micro and mini-grid systems, which can supply affordable electricity to rural and remote areas, especially in developing countries. These diesel generators have no exhaust after-treatment system thus exhaust emissions are high. This paper investigates the potential of introducing simulated synthetic gas (syngas) to diesel in a small diesel engine to explore the opportunities of widening fuel choices and reducing emissions using a 5.7kW single cylinder direct injection diesel generator engine. Three different simulated syngas blends (with varying hydrogen content) were prepared to represent the typical syngas compositions produced from downdraft gasification and were injected into the air inlet. In-cylinder pressure, ignition delay, premixed combustion, combustion stability, specific energy consumption (SEC), and gaseous and particle emissions were measured at various power settings and mixing ratios.
Technical Paper

Effect of Supercharging on Cycle-To-Cycle Variation in a Two-Stroke Spark Ignition Engine

2016-04-05
2016-01-0688
Fluctuations in the operational output of spark ignition engines are observed from one engine cycle to the other, when an engine is run at technically identical operating condition. These fluctuations known as cycle-to-cycle variations, when high, adversely affect the performance of an engine. Reduction in cycle-to-cycle variation in engines has been noted by researchers as one of the methods of improving engine efficiency and operational stability. This study investigated the combustion performance characteristics of two fuels: E5 (95% gasoline and 5% ethanol) and ULG98 (unleaded gasoline) in a spark ignition engine, operating at varying inlet pressure conditions and ignition timing. A two-stroke, 80mm bore, spark ignition engine was operated at an engine speed of 750 rpm, inlet pressures of 1.6 and 2.0 bar and spark-timings ranging from 2 to 13 bTDC. A top cylinder head with a centralized spark plug was used in all the experiments.
Technical Paper

Gasoline Engine Cycle Simulation Using the Leeds Turbulent Burning Velocity Correlations

1993-10-01
932640
A 3-zone thermodynamic cycle model has been developed which incorporates the Leeds correlations of turbulent burning velocity. The correlations encompass both the beneficial effects of turbulence in flame wrinkling and the detrimental effects of flame strain, which can lead to partial or total flame quench. Allowance has been made for the effects of “developing turbulence”, as the initially laminar flame kernel grows and is progressively influenced by larger scales of turbulence. Available experimental cylinder pressure and flame propagation data were used to check the plausibility of the simulation code and to establish values for the various constants employed to characterize the turbulence. The program was then used to explore the effects of engine speed, mixture strength, induction pressure and turbulence levels on the development of the combustion event.
Technical Paper

Piston Assembly Friction Losses: Comparison of Measured and Predicted Data

2006-04-03
2006-01-0426
The main objective of this research was to validate the friction prediction capability of Ricardo Software products PISDYN and RINGPAK by comparing predictions with measured piston assembly friction force. The measurements were made by the University of Leeds on a single cylinder Ricardo Hydra gasoline engine using an IMEP method developed by the University. This technique involves the use of advanced instrumentation to make accurate measurements of cylinder pressure, crankshaft angular velocity and connecting rod strain. These measured values are used to calculate the forces acting on the piston assembly including the friction force. PISDYN was used by Ricardo to calculate friction force at the interface between the piston skirt and cylinder liner. The model used includes the effects of secondary dynamics, partial lubrication and piston skirt profile. RINGPAK was used by Ricardo to calculate the friction force at each piston ring.
Technical Paper

Real World Driving: Emissions in Highly Congested Traffic

2017-10-08
2017-01-2388
The emissions from vehicles in real world driving are of current concern, as they are often higher than on legislated test cycles and this may explain why air quality in cities has not improved in proportion to the reduction in automotive emissions. This has led to the Real Driving Emissions (RDE) legislation in Europe. RDE involves journeys of about 90km with roughly equal proportion of urban, rural and motorway driving. However, air quality exceedances occur in cities with urban congested traffic driving as the main source of the emissions that deteriorate the air quality. Thus, the emissions measured on RDE journeys may not be relevant to air quality in cities. A Temet FTIR and Horiba exhaust flow measurement system was used for the mass emissions measurements in a Euro 4 SI vehicle. A 5km urban journey on a very congested road was undertaken 29 times at various times so that different traffic congestion was encountered.
Technical Paper

Spatial Structure in End-Gas Autoignition

1993-10-01
932758
Numerical investigations are reported on the location of sites at which autoignition first develops in the end-gas ahead of a spark-ignited flame in a combustion chamber following rapid compression of an alkane + air mixture to high pressures and temperatures. Attention is drawn to the part played by the reactions that give rise to a negative temperature coefficient of reaction rate in an inhomogeneous temperature field. A ‘reduced’ kinetic mechanism was employed to model the spontaneous oxidation of n-alkanes. Flame propagation was described in terms of the ‘eddy dissipation concept’ and coupled to the more detailed mechanism by means of a switching algorithm. The CFD calculations were performed by use of KIVA II.
Technical Paper

The Influence of Circumferential Waviness of the Journal on the Lubrication of Dynamically Loaded Journal Bearings

1997-02-24
970216
Current trends in automotive engine design are towards smaller, lighter components operating under higher specific loads. Consequently, engine bearings are expected to operate under highly stressed conditions, with minimum lubricant film thicknesses falling below 1μm. There is, however, insufficient understanding of acceptable tolerances on surface geometry of bearing shells and crankshaft pins. Measurement data suggest that some engine crankpins are machined with as many as 21 circumferential lobes. Some lobes have amplitudes in excess of 5 μm and are thought to be responsible for premature bearing damage. This study presents results from a theoretical analysis of dynamically loaded journal bearings with circumferential lobes on the journal. The Reynolds equation for a rigid journal bearing is solved for an incompressible, Newtonian, iso-viscous lubricant, with a flow conserving cavitation model accommodating oil film history.
Journal Article

The Influence of Residual Gas NO Content on Knock Onset of Iso-Octane, PRF, TRF and ULG Mixtures in SI Engines

2013-12-20
2013-01-9046
Reported in the current paper is a study of the effects of Nitric Oxide (NO) within a simulated Exhaust Gas Residual (sEGR) on Spark Ignition (SI) engine end gas autoignition. A modified version of the single cylinder Leeds University Ported Optical Engine Version 2 (LUPOE-2) engine was designed to completely eliminate retained residual gas and so allow unambiguous definition of the composition of the in-cylinder charge. The engine was alternately operated on stoichiometric mixtures of iso-octane, two Primary Reference Fuels (PRF), a Toluene Reference Fuel (TRF), and a commercially available Unleaded Gasoline (ULG) and air. These mixtures were diluted with sEGR (products of the complete stoichiometric combustion of the given fuel/air mixture) in mass fractions ranging from 0-15%; with and without 5000ppm NO (0.52% by mass) within that sEGR.
Technical Paper

The Role of Exhaust Pipe and Incylinder Deposits on Diesel Particulate Composition

1992-09-01
921648
Diesel engine exhaust pipe and incylinder deposits were analysed for the global fuel, lube oil, carbon and ash fractions for a range of diesel engines. A large SOF fraction, typically 30%, was found and this was dominated by lubricating oil. These deposits are shown to contain significant levels of PAH and hence provide a source of diesel PAH emissions and possible sites for incylinder pyrosynthesis of high molecular weight PAH. A Perkins 4-236 NA DI was used to investigate the role of exhaust pipe deposits on PAH emissions. It was shown that PAH compounds could be volatilised from the exhaust pipe. The difference in the exhaust inlet and outlet particulate composition for diesel and kerosene fuels was used to quantify the n-alkane and PAH emissions originating from the exhaust pipe deposits. Comparison with pure PAH free fuels showed that the exhaust outlet PAH composition was similar to that expected from the exhaust pipe deposits.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

Waste Lubricating Oil as a Source of Hydrogen Fuel using Chemical Looping Steam Reforming

2010-10-25
2010-01-2192
Initial results are presented for the production of hydrogen from waste lubricating oil using a chemical looping reforming (CLR) process. The development of flexible and sustainable sources of hydrogen will be required to facilitate a "hydrogen economy." The novel CLR process presented in this paper has an advantage over hydrogen production from conventional steam reforming because CLR can use complex, low value, waste oils. Also, because the process is scalable to small and medium size, hydrogen can be produced close to where it is required, minimizing transport costs. Waste lubricating oil typically contains 13-14% weight of hydrogen, which through the steam reforming process could produce a syngas containing around 75 vol% H₂, representing over 40 wt% of the fuel. The waste oil was converted to a hydrogen-rich syngas in a packed bed reactor, using a Ni/ Al₂O₃ catalyst as the oxygen transfer material (OTM).
X