Refine Your Search


Search Results

Viewing 1 to 12 of 12
Technical Paper

A Comprehensive Study on Different System Level Engine Simulation Models

Engine simulation can be performed using model approaches of different depths in capturing physical effects. The present paper presents a comprehensive comparison study on seven different engine models. The models range from transient 1D cycle resolved approaches to steady-state non-dimensional maps. The models are discussed in the light of key features, amount and kind of required input data, model calibration effort and predictability and application areas. The computational performance of the different models and their capabilities to capture different transient effects is investigated together with a vehicle model under real-life driving conditions. In the trade-off field of model predictability and computational performance an innovative approach on crank-angle resolved cylinder modeling turned out to be most beneficial.
Journal Article

Accelerated Fatigue and Modal Parameter Identification of Lightweight Structures

Car components are exposed to the random/harmonic/impact excitation which can result in component failure due to vibration fatigue. The stress and strain loads do depend on local stress concentration effects and also on the global structural dynamics properties. Standardized fatigue testing is long-lasting, while the dynamic fatigue testing can be much faster; however, the dynamical changes due to fatigue are usually not taken into account and therefore the identified fatigue and structural parameters can be biased. In detail: damage accumulation results in structural changes (stiffness, damping) which are hard to measure in real time; further, structural changes change the dynamics of the loaded system and without taking this changes into account the fatigue load in the stress concentration zone can change significantly (even if the excitation remains the same). This research presents a new approach for accelerated vibration testing of real structures.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Journal Article

Characterization of Brake Creep Groan Vibrations

Creep groan is an annoying brake noise at very low speeds of the vehicle. In general, stick-slip between brake disk and brake pads is believed to be the most dominating vibration mechanism of creep groan phenomena. This paper will show by sophisticated measurement techniques that stick-slip and speed-dependent friction is an important trigger. However, the overall vibration is much more complex than stick-slip reproduced by simple conveying belt minimal models. It turns out that in typical brake systems of passenger cars, creep groan appears from 15 to 25 Hz as well as 60 to 100 Hz. The mechanism from 15 to 25 Hz is highly impulsive and “hard”. Transitions between stick and slip phases trigger coupled nonlinear vibrations of the complete brake and suspension system. From 60 to 100 Hz, the vibrations show a more harmonic-like and “soft” signature, caused mainly by a speed-dependent friction behavior.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Crank-Angle Resolved Real-Time Capable Engine and Vehicle Simulation - Fuel Consumption and Driving Performance

The present work introduces a fully integrated real-time (RT) capable engine and vehicle model. The gas path and drive line are described in the time domain of seconds whereas the reciprocating characteristics of an IC engine are reflected by a crank angle resolved cylinder model. The RT engine model is derived from a high fidelity 1D cycle simulation and gas exchange model to support an efficient and consistent transfer of model data like geometries, heat transfer or combustion. The workflow of model calibration and application is outlined and base ECU functionalities for boost pressure, EGR, smoke and idle speed control are applied for transient engine operation. Steady state results of the RT engine model are compared to experimental data and 1D high fidelity simulations for 19 different engine load points. In addition an NEDC (New European Drive Cycle) is simulated and results are evaluated with data from chassis dynamometer measurements.
Technical Paper

FCEV Performance Assessment - Electrochemical Fuel Cell and Battery Modelling on Vehicle Level

Fuel cell electric vehicles are a promising technology to create CO2- neutral mobility. Model-based development approaches are key to reduce costs and to raise efficiencies. A model on vehicle system level is discussed that balances the need of physical depth and computational performance. The vehicle model comprises the domains of mechanics, electrics, thermodynamics, cooling and controls. Detailed models of the fuel cell and battery are presented as a part of the system model. The models apply electrochemical approaches and spatial resolutions up to 3D. The models of both components are validated via 3D reference simulations showing a seamless parameter transfer between system level and CFD-based simulations. The validity of the vehicle model, including the electrochemical components, is demonstrated by simulating the Toyota Mirai vehicle. Simulation results of an NEDC are compared to measurements.
Technical Paper

Performance Evaluation of an Electric Vehicle with Multiple Electric Machines for Increased Overall Drive Train Efficiency

Proposed solutions for electric vehicles range from the simple single-motor drive coupled to one axle through a mechanical differential, to more complex solutions, such as four in-wheel motors, which ask for electronic torque vectoring. Main reasons for having more than one electric machine are: reduction of the rated power of each motor, which most likely leads to simplification and cost reduction of all the electric drive components; increased reliability of the overall traction system, enhancing fault tolerance ability; increase of the degrees of freedom which allows for control strategy optimization and efficiency improvement. In particular, electrical machines efficiency generally peaks at around 75% of load and this usually leads to machine downsizing to avoid operation in low efficiency regions.
Technical Paper

Piezoresistive 3D Printed (FFF) Accelerometers

Fused filament fabrication (FFF) 3D printing technology, one of the most accessible additive manufacturing technologies, can be used to create sensors based on different sensing principles, e.g.: capacitance, inductance, piezoelectricity, piezoresistivity. Piezoresistivity (strain-dependent electrical resistivity) has been predominantly used for the creation of static/quasistatic 3d printed sensors with relatively low sensitivity. This study researches the possibilities of a single-process 3d printing of a piezoresistive accelerometer. Initially, the methods for the axial and cross-axial identification of the piezoresistive properties are discussed. It is shown that the sensitivity is highly dependent on the printing parameters, especially the printing track orientation vs the mechanical load orientation. The research on the sensitivity of a 3D printed piezoresistive structure is extended with an inertial mass-based accelerometer design.
Technical Paper

Still-Camera Based 3D Experimental Modal Analysis

Image-based methods in vibration measurements typically require the use of complex high-speed camera systems. By using the recently introduced Spectral Optical Flow Imaging method, full-field high-frequency vibration data can be measured using a cost-effective still-frame camera. Using a single camera, only the motion perpendicular to the optical axis can typically be identified. Depth information, lost in the 2D imaging process, can be obtained by employing multi-camera imaging systems. Alternatively, the recently introduced frequency domain triangulation method offers a way of measuring full-field 3D deflection shapes using a single, moving camera. This research presents the required theoretical background to combine the Spectral Optical Flow Imaging and frequency-domain triangulation methods in an experimental modal analysis experiment using a single, moving still-frame camera.
Journal Article

The Damage Operator Approach: Fatigue, Creep and Viscoplasticity Modeling in Thermo-Mechanical Fatigue

In the last decades the development time of vehicles has been drastically reduced due to the application of advanced numerical and experimental methods. Specifications concerning durability and other functional attributes for every new model improve for every vehicle. In particular, for machines and components under variable multiaxial loading, fatigue evaluation is one of the most important steps in the design process. Appropriate material testing and simulation is the key to efficient life prediction. However, the life of automotive components, power plants and other high-temperature facilities depends mostly on thermo-mechanical fatigue (TMF). This is due to the normally variable service conditions, which contain the phases of startup, full load, partial load and shut-down.
Technical Paper

Torque Characteristic Optimization of a Brushless DC Motor Based Integrated Starter-Generator

Paper outlines a case study on optimal control of a brushless direct-current (BLDC) motor, operating as an Integrated Starter Generator (ISG) in a micro hybrid propulsion system for motorcycles. Main research focus is optimization of BLDC machine torque characteristics, particularly in starter operation mode, in order to improve cranking of the internal combustion engine (ICE) at various operation conditions. Stringent cranking torque demands, limited physical dimensions of the electrical machine and a wide rotational speed range of prototype ICE are most challenging reasons for the exhaustive study of applicable control algorithms in the low rpm range. Two approaches for optimization of torque characteristics are discussed, common known flux-weakening method and the modification of power-switch conduction angle, respectively. The evaluation of most relevant control approaches is based on computer simulation and prototype set-up measurements.