Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Technical Paper

Characterization of Oxidation Behaviors and Chemical-Kinetics Parameters of Diesel Particulates Relevant to DPF Regeneration

2010-10-25
2010-01-2166
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
Technical Paper

Characterization of Particulate Morphology, Nanostructures, and Sizes in Low-Temperature Combustion with Biofuels

2012-04-16
2012-01-0441
Detailed characteristics of morphology, nanostructures, and sizes were analyzed for particulate matter (PM) emissions from low-temperature combustion (LTC) modes of a single-cylinder, light-duty diesel engine. The LTC engines have been widely studied in an effort to achieve high combustion efficiency and low exhaust emissions. Recent reports indicate that the number of nucleation mode particles increased in a broad engine operating range, which implies a negative impact on future PM emissions regulations in terms of the nanoparticle number. However, the size measurement of solid carbon particles by commercial instruments is indeed controversial due to the contribution of volatile organics to small nanoparticles. In this work, an LTC engine was operated with various biofuel blends, such as blends (B20) of soy bean oil (soy methyl ester, SME20) and palm oil (palm methyl ester, PME20), as well as an ultra-low-sulfur diesel fuel.
Technical Paper

Clean and Cost-effective Dry Boundary Lubricants for Aluminum Forming

1998-02-23
980453
Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce the sliding friction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal-formability tests indicated that the boric acid films applied to aluminum surfaces worked quite well, improving draw scale performance by 58 to 75%.
Technical Paper

Comparing the Performance of SunDiesel™ and Conventional Diesel in a Light-Duty Vehicle and Heavy-Duty Engine

2005-10-24
2005-01-3776
SunDiesel fuel is a biomass-to-liquid (BTL) fuel that may have certain attributes different from conventional diesel. In this investigation, 100% SunDiesel was tested both in a Mercedes A-Class (MY1999) diesel vehicle and a single-cylinder heavy-duty compression-ignition direct-injection engine. The SunDiesel's emissions and fuel consumption were significantly better than conventional diesel fuel, especially in nitrogen oxides (NOx) reduction. In the vehicle U.S. Environmental Protection Agency (EPA), Federal Test Procedure 75 (FTP-75), and New European Drive Cycle (NEDC) tests, the carbon dioxide emissions on a mile basis (g/mile) from SunDiesel fuel were almost 10% lower than the conventional diesel fuel. Similarly, in the single-cylinder engine steady-state tests, the reductions in brake specific NOx, carbon monoxide (CO), and particulate matter (PM) are equally significant. Combustion analysis, though not conclusive, indicates that there are differences deserving further research.
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
Technical Paper

Computing Statistical Averages from Large Eddy Simulation of Spray Flames

2016-04-05
2016-01-0585
The primary strength of large eddy simulation (LES) is in directly resolving the instantaneous large-scale flow features which can then be used to study critical flame properties such as ignition, extinction, flame propagation and lift-off. However, validation of the LES results with experimental or direct numerical simulation (DNS) datasets requires the determination of statistically-averaged quantities. This is typically done by performing multiple realizations of LES and performing a statistical averaging among this sample. In this study, LES of n-dodecane spray flame is performed using a well-mixed turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. The computational cost of each calculation was in the order of 3 weeks on 200 processors with a peak cell count of about 22 million at 1 ms.
Technical Paper

Continuously Variable Transmission Modifications and Control for a Diesel Hybrid Electric Powertrain

2004-08-23
2004-40-0057
The Center for Transportation Research (CTR) Vehicle Systems team modified a Nissan CK-2 Continuously Variable Transmission (CVT) for a diesel hybrid powertrain application. Mechanical and electrical modifications were made to the CVT, both internal and external to the transmission. The goal of this experiment was to investigate and demonstrate the potential of CVT for diesel engines hybrid electric vehicles (HEVs) in fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact particular transmission control strategies have on measured fuel economy and emissions specifically, nitrogen oxides (NOx) and particulate matter (PM).
Technical Paper

Cylinder Pressure Analysis of a Diesel Engine Using Oxygen-Enriched Air and Emulsified Fuels

1990-09-01
901565
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
Technical Paper

Detailed Characterization of Morphology and Dimensions of Diesel Particulates via Thermophoretic Sampling

2001-09-24
2001-01-3572
A thermophoretic particulate sampling device was used to investigate the detailed morphology and microstructure of diesel particulates at various engine-operating conditions. A 75 HP Caterpillar single-cylinder direct-injection diesel engine was operated to sample particulate matter from the high-temperature exhaust stream. The morphology and microstructure of the collected diesel particulates were analyzed using a high-resolution transmission electron microscope and subsequent image processing/data acquisition system. The analysis revealed that spherical primary particles were agglomerated together to form large aggregate clusters for most of engine speed and load conditions. Measured primary particle sizes ranged from 34.4 to 28.5 nm at various engine-operating conditions. The smaller primary particles observed at high engine-operating conditions were believed to be caused by particle oxidation at the high combustion temperature.
Technical Paper

Detailed Investigation of Soot Deposition and Oxidation Characteristics in a Diesel Particulate Filter Using Optical Visualization

2013-04-08
2013-01-0528
Detailed soot deposition and oxidation characteristics in a diesel particulate filter (DPF) have been experimentally examined on a unique bench-scale DPF test system that has a visualization window. The filtration and regeneration processes were visualized to examine soot deposition and oxidation behaviors on the filter channel surfaces, along with measurements of pressure drop across the filter. The pressure drop caused by trapped soot was separated from the measured total pressure drop by subtracting the pressure drop caused by the clean filter itself. Then, the soot-derived pressure-drop data, normalized (non-dimensionalized) by the volumetric flow rate, exhaust gas viscosity, and DPF volume, were used to compare filtration and regeneration characteristics at different experimental conditions, independently of flow conditions.
Technical Paper

Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends

2013-09-08
2013-24-0185
Detailed properties of particulate matter (PM) emissions from a gasoline direct injection (GDI) engine were analyzed in terms of size, morphology, and nanostructures, as gasoline and its ethanol blend E20 were used as a fuel. PM emissions were sampled from a 0.55L single-cylinder GDI engine by means of a scanning mobility particle sizer (SMPS) for size measurements and a self-designed thermophoretic sampling device for the subsequent analyses of size, morphology and nanostructures using a transmission electron microscope (TEM). The particle sizes were evaluated with variations of air-fuel equivalence ratio and fuel injection timing. The most important result from the SMPS measurements was that the number of nucleation-mode nanoparticles (particularly those smaller than 10 - 15 nm) increased significantly as the fuel injection timing was advanced to the end-of-injection angle of 310° bTDC.
Technical Paper

Development Process of Shock Waves by Supersonic Spray

2004-03-08
2004-01-1769
A numerical simulation of shock wave generation by high-pressure and high-speed spray jet has been conducted to compare to the experimental results obtained by X-ray radiographic technique. Using the space-time conservation element solution element (CESE) method and the stochastic particle techniques to account for fuel injections and droplet collisions, supersonic-spray-induced shock waves are successfully simulated. Similar to the experimental condition, a non-evaporating diesel spray in a chamber filled with inert gas sulfur hexafluoride (SF6) at 1 atm pressure under room temperature (30° C) is simulated. To simulate the needle lift effect in the single-hole diesel injector, various injection-rate profiles were employed. In addition, the effects of discharge coefficients, with Cd ranging from 0.8 to 1.0, were also considered to simulate the shock generation processes in the leading spray front.
Technical Paper

Development in Lost Foam Casting of Magnesium

2003-03-03
2003-01-0821
Preliminary work was conducted in the casting of magnesium using the lost foam casting process. The lost foam or expendable pattern casting (EPC) process is capable of making extremely complicated part shapes at acceptable soundness levels and with low manufacturing costs. Standard test shapes were used to determine the ability of the magnesium to fill the mold and to assess the types of defects encountered. This paper will briefly explain how this project evolved including the developmental strategies formed, the products selected, the casting trials performed, and the casting results.
Technical Paper

Development of a 3-D Model for Analyzing the Effects of Channel Geometry on Filtration Characteristics in Particulate Filter System

2013-04-08
2013-01-1583
A three-dimensional (3-D) computational fluid dynamics (CFD) code has been developed to predict flow dynamics and pressure drop characteristics in geometry-modified filters in which the normalized distance of the outlet channel plugs from the inlet has been varied at 0.25, 0.50, and 0.75. In clean filter simulations, the pressure drop in geometry-modified filters showed higher values than for conventional filters because of the significant change in the pressure field formed inside the channel that determines the amount of flow entering the modified channel. This flow through the modified channel depends on plug position initially but has a maximum limit when pressure difference and geometrical change are compromised. For soot loading simulations, a Lagrangian multiphase flow model was used to interpret the hydrodynamics of particle-laden flow with realistic inputs.
X