Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Knowledge Representation Scheme for Nondestructive Testing of Composite Components

1990-02-01
900070
This paper presents our efforts to formalize the knowledge domain of nondestructive quality control of automotive composite components with organic (resin) matrices and to develop a prototype knowledge-based system, called NICC for Nondestructive Inspection of Composite Components, to help in the quality assurance of individual components. Geometric and bonding characteristics of parts and assemblies are taken into account, as opposed to the better understood evaluation of test specimens. The reasoning process was divided in two stages: in the first stage all flaws that might be present in the given part are characterized; in the second stage appropriate nondestructive testing procedures are specified to detect each of the possible flaws. The use of nondestructive techniques in the inspection of composites is fairly recent and hence, the knowledge required to develop an expert system is still very scattered and not fully covered in the literature.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
Technical Paper

Comparison of Verity and Volvo Methods for Fatigue Life Assessment of Welded Structures

2013-09-24
2013-01-2357
Great efforts have been made to develop the ability to accurately and quickly predict the durability and reliability of vehicles in the early development stage, especially for welded joints, which are usually the weakest locations in a vehicle system. A reliable and validated life assessment method is needed to accurately predict how and where a welded part fails, while iterative testing is expensive and time consuming. Recently, structural stress methods based on nodal force/moment are becoming widely accepted in fatigue life assessment of welded structures. There are several variants of structural stress approaches available and two of the most popular methods being used in automotive industry are the Volvo method and the Verity method. Both methods are available in commercial software and some concepts and procedures related the nodal force/moment have already been included in several engineering codes.
Technical Paper

Design Optimization and Reliability Estimation with Incomplete Uncertainty Information

2006-04-03
2006-01-0962
Existing methods for design optimization under uncertainty assume that a high level of information is available, typically in the form of data. In reality, however, insufficient data prevents correct inference of probability distributions, membership functions, or interval ranges. In this article we use an engine design example to show that optimal design decisions and reliability estimations depend strongly on uncertainty characterization. We contrast the reliability-based optimal designs to the ones obtained using worst-case optimization, and ask the question of how to obtain non-conservative designs with incomplete uncertainty information. We propose an answer to this question through the use of Bayesian statistics. We estimate the truck's engine reliability based only on available samples, and demonstrate that the accuracy of our estimates increases as more samples become available.
Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Technical Paper

Need to Jumpstart your Six Sigma Program: Try Benchmarking

2005-04-11
2005-01-1609
A Benchmarking technique known as Data Envelopment Analysis (DEA) will be discussed as a jumpstart technique to put energy back into a company's Six Sigma program. A hypothetical example of benchmarking the production lines of a manufacturing company will be discussed using Six Sigma quality measures. Typical DEA software output will be discussed.
Technical Paper

Propagation of Uncertainty in Optimal Design of Multilevel Systems: Piston-Ring/Cylinder-Liner Case Study

2004-03-08
2004-01-1559
This paper proposes an approach for optimal design of multilevel systems under uncertainty. The approach utilizes the stochastic extension of the analytical target cascading formulation. The reliability of satisfying the probabilistic constraints is computed by means of the most probable point method using the hybrid mean value algorithm. A linearization technique is employed for estimating the propagation of uncertainties throughout the problem hierarchy. The proposed methodology is applied to a piston-ring/cylinder-liner engine subassembly design problem. Specifically, we assess the impact of variations in manufacturing-related properties such as surface roughness on engine attributes such as brake-specific fuel consumption. Results are compared to the ones obtained using Monte Carlo simulation.
Journal Article

Reduction of Steering Effort in the Event of EPAS Failure using Differential Braking Assisted Steering

2017-03-28
2017-01-1489
Electric Power Assisted Steering (EPAS) is widely adopted in modern vehicles to reduce steering effort. It is probable that some EPAS systems will experience a shutdown due to reliability issues stemming from electrical and/or electronic components. In the event of EPAS failure, power assist becomes unavailable and the steering system reverts to a fully manual state, leading to excessive steering torque demands from the driver to maneuver the vehicle at lower speeds, i.e., under 30 mph. This situation has resulted in dozens of reported crashes and several OEM safety recalls in the past few years. Inspired by recent work which utilizes independent driving torque of in-wheel-motor vehicles to reduce steering torque, this paper proposes the use of Differential Braking Assisted Steering (DBAS) to alleviate steep increases in steering torque upon EPAS failure. DBAS requires software upgrades with minimal hardware modification to EPAS, which is preferable for a backup system.
Technical Paper

Robust Prediction of Lane Departure Based on Driver Physiological Signals

2016-04-05
2016-01-0115
Lane change events can be a source of traffic accidents; drivers can make improper lane changes for many reasons. In this paper we present a comprehensive study of a passive method of predicting lane changes based on three physiological signals: electrocardiogram (ECG), respiration signals, and galvanic skin response (GSR). Specifically, we discuss methods for feature selection, feature reduction, classification, and post processing techniques for reliable lane change prediction. Data were recorded for on-road driving for several drivers. Results show that the average accuracy of a single driver test was approx. 70%. It was greater than the accuracy for each cross-driver test. Also, prediction for younger drivers was better.
Journal Article

The Influence of Road Surface Properties on Vehicle Suspension Parameters Optimized for Ride - Design Trends for Global Markets

2012-04-16
2012-01-0521
Suspension design is influenced by many factors, especially by vehicle dynamics performance in ride, handling and durability. In the global automotive industry it is common to “customize” or tune suspension parameters so that a vehicle is more acceptable to a different customer base and in a different driving environment. This paper seeks to objectively quantify certain aspects of tuning via ride optimization, taking account of market differences in road surface spectral properties and loading conditions. A computationally efficient methodology for suspension optimization is developed using stochastic techniques. A small (B-class) vehicle is chosen for the study and the following main suspension parameters are selected for optimization - spring stiffness, damping rate and vertical tire stiffness. The road is characterized as a stationary random process, using scaling and shaping filters representative of comparable roads in India and the USA.
Technical Paper

Variance Reduction Techniques for Reliability Estimation Using CAE Models

2003-03-03
2003-01-0150
Traditional reliability assessment methods based on physical testing can require prohibitively large sample sizes in many applications. This has led manufacturers to employ virtual testing using CAE models in place of physical testing. However, when the CAE models are not valid, the resulting reliability assessment may be unreliable. In this paper we develop theory and methodology in which traditional physical testing can be used in conjunction with CAE models to create a new type of accelerated testing that requires smaller sample sizes than traditional test plans while exhibiting robustness with respect to inaccuracies in the CAE models. These test plans are implemented by physically testing a biased sample of products and employing a variance reduction technique such as importance sampling. The CAE model is used as a prior belief for failure probability from which one can derive the sampling plan which minimizes the variance.
X