Refine Your Search

Topic

Author

Search Results

Technical Paper

An Architecture for Autonomous Agents in a Driving Simulator

2000-04-02
2000-01-1596
The addition of synthetic traffic to a driving simulation greatly enhances the realism of the virtual world. Giving this traffic human-like behavior is likewise desirable, and has been the focus of some research over the past few years. This paper presents a modular architecture for including autonomous traffic in a driving simulation, and describes the first steps taken toward the application of this architecture to the DaimlerChrysler Auburn Hills Simulator. By separating the planning part of the agent from the low-level control and vehicle dynamics systems, the described architecture permits the inclusion of powerful, previously developed components in a straightforward way; in the present application, agents use Soar to reason about their actions. This paper gives an overview of the structures of the agents, and of the entire system, describes the components and their implementations, and discusses the current state of the project and plans for the future.
Technical Paper

An Experimental Investigation of Transient Heat Losses to Tank Wall During the Inflator Tank Test

1998-09-29
982326
A series of inflator tank tests was carried out to determine the amount of transient heat losses to the tank wall during these tests. The time history data of tank wall temperature, and tank interior gas temperature and pressure, were measured. The tank wall temperature data were analyzed using an inverse heat conduction method to generate the transient heat loss fluxes from the tank gas to the tank wall. The validity of the results are discussed along with the physical reasoning and experimental observations. This is the first part of an effort in a research project to develop a comprehensive heat transfer model to predict the transient heat losses to the tank wall during the inflator tank test.
Technical Paper

Analysis of Temperatures and Stresses in Wet Friction Disks Involving Thermally Induced Changes of Contact Pressure

1998-09-14
982035
Thermal distortions of friction disks caused by frictional heating modify pressure distribution on friction surfaces. Pressure distribution, in turn, determines distribution of generated frictional heat. These interdependencies create a complex thermoelastic system that, under some conditions, may become unstable and may lead to severe pressure concentrations with very high local temperature and stress. The phenomenon is responsible for many common thermal failure modes of friction elements and is known as frictionally excited thermoelastic instability (TEI). In the paper, one of the cases of TEI is investigated theoretically and experimentally. The study involves a two-disk structure with one fiction disk and one matching steel disk that have one friction interface. An unsteady heat conduction problem and an elastic contact problem are modeled as axisymmetric ones and are solved using the finite element method.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

Comparative Life Cycle Assessment of Plastic and Steel Vehicle Fuel Tanks

1998-11-30
982224
Federal standards that mandate improved fuel economy have resulted in the increased use of lightweight materials in automotive applications. However, the environmental burdens associated with a product extend well beyond the use phase. Life cycle assessment is the science of determining the environmental burdens associated with the entire life cycle of a given product from cradle-to-grave. This report documents the environmental burdens associated with every phase of the life cycle of two fuel tanks utilized in full-sized 1996 GM vans. These vans are manufactured in two configurations, one which utilizes a steel fuel tank, and the other a multi-layered plastic fuel tank consisting primarily of high density polyethylene (HDPE). This study was a collaborative effort between GM and the University of Michigan's National Pollution Prevention Center, which received funding from EPA's National Risk Management Research Laboratory.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

Evaluation of Strain Rate-Sensitive Constitutive Models for Simulation of Servo Stamping: Part 1 Theory

2020-10-01
2020-01-5073
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Technical Paper

Experimental Evaluation of the Quench Rate of AA7075

2014-04-01
2014-01-0984
The aluminum alloy 7075-T6 has the potential to be used for structural automotive body components as an alternative to boron steel. Although this alloy shows poor formability at room temperature, it has been demonstrated that hot stamping is a feasible sheet metal process that can be used to overcome the forming issues. Hot stamping is an elevated temperature forming operation in which a hot blank is formed and quenched within a stamping die. Attaining a high quench rate is a critical step of the hot stamping process and corresponds to maximum strength and corrosion resistance. This work looks at measuring the quench rate of AA7075-T6 by way of three different approaches: water, a water-cooled plate, and a bead die. The water-cooled plate and the bead die are laboratory-scale experimental setups designed to replicate the hot stamping/die quenching process.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Low Carbon Steel and HSLA Steel Sheets

2015-04-14
2015-01-0706
In this paper, failure modes of dissimilar laser welds in lap-shear specimens of low carbon steel and high strength low alloy (HSLA) steel sheets are investigated based on experimental observations. Micro-hardness tests across the weld zones of dissimilar laser welds were conducted. The hardness values of the fusion zones and heat affected zones are significantly higher than those of the base metals. The fatigue lives and the corresponding failure modes of laser welds as functions of the load ranges are then examined. Optical micrographs of the laser welds before and after failure under quasi-static and cyclic loading conditions are then examined. The failure modes and fatigue behaviors of the laser welds under different loading conditions are different. Under quasi-static loading conditions, a necking failure occurred in the upper low carbon steel sheet far away from the laser weld.
Technical Paper

Failure Prediction of Sheet Metals Based on an Anisotropic Gurson Model

2000-03-06
2000-01-0766
A failure prediction methodology that can predict sheet metal failure under arbitrary deformation histories including rotating principal stretch directions and bending/unbending with consideration of damage evolution is reviewed in this paper. An anisotropic Gurson yield criterion is adopted to characterize the effects of microvoids on the load carrying capacity of sheet metals where Hill’s quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The evolution of the void damage is based on the growth, nucleation and coalescence of microvoids. Mroz’s anisotropic hardening rule, which was proposed based on the cyclic plastic behavior of metals observed in experiments, is generalized to characterize the anisotropic hardening behavior due to loading/unloading with consideration of the evolution of void volume fraction. The effects of yield surface curvature are also included in the plasticity model.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements

2003-03-03
2003-01-0007
A comprehensive model for sprays emerging from high-pressure swirl injectors in DISI engines has been developed accounting for both primary and secondary atomization. The model considers the transient behavior of the pre-spray and the steady-state behavior of the main spray. The pre-spray modeling is based on an empirical solid cone approach with varying cone angle. The main spray modeling is based on the Liquid Instability Sheet Atomization (LISA) approach, which is extended here to include the effects of swirl. Mie Scattering, LIF, PIV and Laser Droplet Size Analyzer techniques have been used to produce a set of experimental data for model validation. Both qualitative comparisons of the evolution of the spray structure, as well as quantitative comparisons of spray tip penetration and droplet sizes have been made. It is concluded that the model compares favorably with data under atmospheric conditions.
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety

2015-09-29
2015-01-2868
This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
Technical Paper

Intelligent Vehicle Technologies That Improve Safety, Congestion, and Efficiency: Overview and Public Policy Role

2009-04-20
2009-01-0168
At the forefront of intelligent vehicle technologies are vehicle-to-vehicle communication (V2V) and vehicle-infrastructure integration (VII). Their capabilities can be added to currently-available systems, such as adaptive cruise control (ACC), to drastically decrease the number and severity of collisions, to ease traffic flow, and to consequently improve fuel efficiency and environmental friendliness. There has been extensive government, industry, and academic involvement in developing these technologies. This paper explores the capabilities and challenges of vehicle-based technology and examines ways that policymakers can foster implementation at the federal, state, and local levels.
Technical Paper

Investigation of the Fuel Injection, Mixing and Combustion Processes in an SIDI Engine using Quasi-3D LIF Imaging

2003-03-03
2003-01-0068
The influence of the bulk in-cylinder flow on the spray evolution, evaporation, fuel-air mixing and subsequent flame propagation has been studied in an optical SIDI engine. Quantitative LIF imaging of equivalence ratios was used to characterize the mixture formation and the influence of the local equivalence ratio at the time of spark on the flame propagation. Two extreme bulk flow conditions - high and low swirl - were investigated and pronounced differences in mixture homogeneity and flame propagation were found and characterized.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Measurement of Tire Shear Forces

1970-02-01
700092
Based on a review of existing theoretical and empirical knowledge of the mechanics of pneumatic tires and tire/vehicle systems, a requirement is defined for experimental data relating the shear forces developed at the tire-road interface to the kinematic variables of influence. Test equipment to satisfy this requirement consists of two complementary pieces of apparatus: a laboratory facility which is a modified version of the B. F. Goodrich flat-bed tester, and a mobile device which consists of a three-component (Fx, Fy, Mz) strain-gage dynamometer mounted on a heavy duty highway tractor. The latter provides a capability for testing at speeds up to 70 mph, normal loads up to 2000 lb, tire sideslip angles up to 18 deg, and steady state or programmed variations in longitudinal tire slip from fully locked (100% slip) to 30% overdriven (-30% slip). Representative samples of tire mechanics data obtained using the new equipment are presented and discussed.
X