Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion

2016-10-17
2016-01-2242
Pre-chambers are a means to enable lean burn combustion strategies which can increase the thermal efficiency of gasoline spark ignition internal combustion engines. A new engine concept is evaluated in this work using computational simulations of non-reacting flow. The objective of the computational study was to evaluate the feasibility of several engine design configurations combined with fuel injection strategies to create local fuel/air mixtures in the pre-chambers above the ignition and flammability limits, while maintaining lean conditions in the main combustion chamber. The current work used computational fluid dynamics to develop a novel combustion chamber geometry where the flow was evaluated through a series of six design iterations to create ignitable mixtures (based on fuel-to-air equivalence ratio, ϕ) using fuel injection profiles and flow control via the piston, cylinder head, and pre-chamber geometry.
Technical Paper

Fuel Economy Improvement During Cold Start Using Recycled Exhaust Heat and Electrical Energy for Engine Oil and ATF Warm-Up

2014-04-01
2014-01-0674
A numerical study is conducted to investigate the effect of changing engine oil and automatic transmission fluid (ATF) temperatures on the fuel economy during warm-up period. The study also evaluates several fuel economy improving devices that reduce the warm-up period by utilizing recycled exhaust heat or an electric heater. A computer simulation model has been developed using a multi-domain 1-D commercial software and calibrated using test data from a passenger vehicle equipped with a 2.4 / 4-cylinder engine and a 6-speed automatic transmission. The model consists of sub-models for driver, vehicle, engine, automatic transmission, cooling system, engine oil circuit, ATF circuit, and electrical system. The model has demonstrated sufficient sensitivity to the changing engine oil and ATF temperatures during the cold start portion of the Federal Test Procedure (FTP) driving cycle that is used for the fuel economy evaluation.
Technical Paper

Metamodel Development Based on a Nonparametric Isotropic Covariance Estimator and Application in a V6 Engine

2004-03-08
2004-01-1142
This paper presents the utilization of alternative correlation functions in the Kriging method for generating surrogate models (metamodels) for the performance of the bearings in an internal combustion engine. Originally, in the Kriging method an anisotropic exponential covariance function is developed by selecting optimal correlation parameters through optimization. In this paper an alternative nonparametric isotropic covariance approach is employed instead for generating the correlation functions. In this manner the covariance for spatial data is evaluated in a more straightforward manner. The metamodels are developed based on results from a simulation solver computed at a limited number of sample points, which sample the design space.
Technical Paper

Modal Content of Heavy-Duty Diesel Engine Block Vibration

1997-05-20
971948
High-fidelity overall vehicle simulations require efficient computational routines for the various vehicle subsystems. Typically, these simulations blend theoretical dynamic system models with empirical results to produce computer models which execute efficiently. Provided that the internal combustion engine is a dominant source of vehicle vibration, knowledge of its dynamic characteristics throughout its operating envelope is essential to effectively predict vehicle response. The present experimental study was undertaken to determine the rigid body modal content of engine block vibration of a modern, heavy-duty Diesel engine. Experiments were conducted on an in-line six-cylinder Diesel engine (nominally rated at 470 BHP) which is used in both commercial Class-VIII trucks, and on/off-road military applications. The engine was mounted on multi-axis force transducers in a dynamometer test cell in the standard three-point configuration.
Technical Paper

Modeling Fully-Coupled Rigid Engine Dynamics and Vibrations

1999-05-17
1999-01-1749
The internal combustion (IC) engine is an important source of vibration in many vehicles, and understanding its dynamic response to demands from both the vehicle operator and the terrain is essential to proper engine and mount design and optimization. Development of an engineering tool for understanding this dynamic response and the resulting forces transmitted from the engine block to the supporting structure is a priority in both commercial and military engine applications. Ideally, engine dynamics and vibration would be directly simulated through effective and efficient analytical and computational models of both the internal engine component dynamics as well as engine block vibrations. The present analytical study was undertaken to produce a comprehensive and efficient rigid-body engine dynamics and vibration model which predicts engine block motion, engine mount load transmission, as well as instantaneous engine crankshaft rotational speed.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
Technical Paper

One-Dimensional Transient Dynamics of Fuel Evaporation and Diffusion in Induction Systems

1997-02-24
970058
Engine performance under transients is greatly affected by the fuel behavior in the induction systems. To better understand the fuel behavior, a computer model has been developed to study the one-dimensional coupled heat and mass transfer processes occurring during the transient evaporation of liquid fuel from a heated surface into stagnant air. The energy and mass diffusion equations are solved simultaneously to yield the transient temperatures and species concentrations using a modified finite difference technique. The numerical technique is capable of solving the coupled equations while simultaneously tracking the movement of the evaporation interface. Evaporation results are presented for various initial film thicknesses representing typical puddle thicknesses for multi-point fuel injection systems using heptane, octane, and nonane pure hydrocarbon fuels.
Technical Paper

Probabilistic Analysis for the Performance Characteristics of Engine Bearings due to Variability in Bearing Properties

2003-05-05
2003-01-1733
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine without performing time consuming analyses. The metamodels are developed based on results from actual simulation solvers computed at a limited number of sample points, which sample the design space. A finite difference bearing solver is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric Latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space. The development of the metamodels is validated by comparing results from the metamodels with results from the actual bearing performance solver over a large number of evaluation points. Once the metamodels are established they are employed for performing probabilistic analyses.
Technical Paper

Probabilistic Computations for the Main Bearings of an Operating Engine Due to Variability in Bearing Properties

2004-03-08
2004-01-1143
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine. The metamodels are employed for performing probabilistic analyses for the engine bearings. The metamodels are developed based on results from a simulation solver computed at a limited number of sample points, which sample the design space. An integrated system-level engine simulation model, consisting of a flexible crankshaft dynamics model and a flexible engine block model connected by a detailed hydrodynamic lubrication model, is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

Two-Point Spatial Velocity Correlations in the Near-Wall Region of a Reciprocating Internal Combustion Engine

2017-03-28
2017-01-0613
Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and engine operation strategies, as well as predictive computational models. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), whose structure, similarity and dynamics have been thoroughly documented in the technical literature. Motivated by this need, this paper presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the core flow was quantified via statistical moments and two-point velocity correlations, determined at multiple distances from the wall and piston positions.
Technical Paper

Validation of an EFEA Formulation for Computing the Vibrational Response of Complex Structures

2007-05-15
2007-01-2324
This paper presents a validation case study for an Energy Finite Element Analysis (EFEA) formulation through comparison to test data. The EFEA comprises a simulation tool for computing the structural response of a complex structure and the amount of the radiated power. The EFEA formulation presented in this paper can account for periodic stiffeners, for partial fluid loading effects on the outer part of the structure, and for internal compartments filled with heavy fluid. In order to validate these modeling capabilities of the EFEA two 1/8th scale structures representing an advanced double hull design and a conventional hull design of a surface ship are analyzed. Results for the structural vibration induced on the outer bottom part of the structure are compared to available test data. The excitation is applied at two different locations of the deck structure. Good correlation is observed between the numerical results and the test data.
X